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The stochastic volatility model is a popular tool for modeling the volatility of assets. The model is a nonlinear and non-Gaussian
state space model and presents some challenges not seen in general. Many approaches have been developed for Bayesian
analysis that rely on numerically intensive techniques such as Markov chain Monte Carlo (MCMC). Convergence and mixing
problems still plague MCMC algorithms used for the model. We present an approach that ameliorates the slow convergence
and mixing problems when fitting stochastic volatility models. The approach accelerates the convergence by exploiting the
geometry of one of the targets. We demonstrate the method on various numerical examples.
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1. THE PROBLEM

Most models of volatility that are used in practice are of a multiplicative form, modeling the return of an asset,
say yt, observed at discrete time points, t = 1,… , n, as

yt = 𝜎t𝜖t, (1)

where 𝜖t is an iid sequence and the volatility process 𝜎t is a non-negative stochastic process such that 𝜖t is
independent of 𝜎s for all s ≤ t. It is often assumed that 𝜖t has zero mean and unit variance.

The basic univariate discrete-time stochastic volatility (SV) model writes the returns and the non-anticipative
log-volatility process, xt = log 𝜎2

t , as

xt = 𝜇 + 𝜙(xt−1 − 𝜇) + 𝜎wt (2)

yt = 𝛽 exp
{ 1

2
xt

}
𝜖t, (3)

where x0 ∼ N(𝜇, 𝜎2

1−𝜙2
), wt

iid∼ N(0, 1), and 𝜖t
iid∼ N(0, 1) are all independent processes. The volatility process xt is

not observed directly, but only through the observations, yt. The detailed econometric properties of the model are
discussed in Shephard (1996) and Taylor (1994, 2008).

The model (2)–(3) is a nonlinear state space model and Bayesian analysis of such models can be approached
using various methods, many of which are described in Douc et al. (2014, Chap. 12). Early MCMC approaches
to the problem may be found in Carlin et al. (1992), Kim et al. (1998), Jacquier et al. (1994), and Taylor (1994).
Other more current approaches may be found in Kastner and Frühwirth-Schnatter (2014), with techniques that are
implemented in the R package stochvol (Kastner and Hosszejni, 2019; Hosszejni and Kastner, 2019).
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EFFICIENT FITTING OF STOCHASTIC VOLATILITY MODELS 187

Let Θ = (𝜇, 𝛽, 𝜙, 𝜎) represent the parameters, denote the observations by y1∶n = {y1,… , yn}, and the states
(log-volatility) by x0∶n = {x0, x1,… , xn}, with x0 being the initial state. To run a full Gibbs sampler, we alternate
between sampling model parameters and latent state sequences from their respective full conditional distributions.
Letting p(⋅) denote a generic density, we have the following:

Procedure 1 (Generic Gibbs Sampler for State Space Models).

(i) Draw Θ′ ∼ p(Θ ∣ x0∶n, y1∶n).
(ii) Draw x′0∶n ∼ p(x0∶n ∣ Θ′, y1∶n).

Procedure 1-(i) is generally much easier because it conditions on the complete data {x0∶n, y1∶n}. Procedure
1-(ii) amounts to sampling from the joint smoothing distribution of the latent state sequence and is generally
more difficult. For linear Gaussian models, however, both parts of Procedure 1 are relatively easy to perform
(Frühwirth-Schnatter, 1994; Carter and Kohn, 1994; Shumway and Stoffer, 2017, Chap. 6).

Although the focus of this note is to address Procedure 1-(i), we mention our preferred method for handling
Procedure 1-(ii). Andrieu et al. (2010) introduced the particle Markov chain Monte Carlo (PMCMC) method,
which proposed a conditional particle filter (CPF). The brilliance of the approach is that the CPF is invariant in the
sense that the kernel leaves p(x0∶n ∣ Θ′, y1∶n) invariant; that is, all elements of the chain have the target distribution.
Thus, one can avoid methods that merely approximate the distribution.

Unfortunately, CPF suffers from the path degeneracy. Lindsten et al. (2014) solved the problem by introducing
CPF with ancestral sampling (CPF-AS). The addition of ancestral sampling improved on the problem of path
degeneracy while being robust to the number of particles generated. In fact, the method works very well with a
small number of particles. Ancestral sampling maintains the invariance of the kernel and, in addition to being
efficient, the CPF-AS algorithm is uniformly ergodic under rather general assumptions (Lindsten et al., 2015).
The algorithm is presented in the next section so as not to breakup the exposition.

As previously stated, step Procedure 1-(i) is typically the easier step. For state space models, normal priors on
𝜇 or 𝛽 and 𝜙 [or a beta prior on 1

2
(𝜙+ 1)], and an inverse gamma prior on 𝜎2 are typically employed. The methods

treat 𝜙 as a regression parameter and 𝜎 as scale parameter and this treatment is what leads to the inefficiency for
this particular nonlinear model. The problem for SV models is that 𝜙 behaves more like a scale parameter than a
regression parameter. For example, the autocorrelation function (ACF) of {y2

t } is given by

Cor(y2
t , y

2
t+h) =

exp(𝜎2
x𝜙

h) − 1

𝜅𝜖 exp(𝜎2
x ) − 1

, h = 1, 2,… , (4)

where 𝜅𝜖 is the kurtosis of the noise, 𝜖t, and 𝜎2
x = 𝜎2∕(1 − 𝜙2). For SV models, the ACF values are small and the

decay rate as a function of lag is less than exponential and somewhat linear. This means that if you specify values
for 𝜙 but allow us to control 𝜎 (and consequently 𝜎x), we can make the model ACF to look approximately the same
no matter which values of 𝜙 are chosen. This is accomplished by moving 𝜙 and 𝜎 in opposite directions. Another
way of looking at the problem is to define (with 𝜇 = 0 and 𝛽 = 1) 𝜉t =

1

2𝜎x
xt and 𝜁t =

1

2
wt so we may write (3) as

yt = e𝜎x𝜙𝜉t−1 e𝜎⋅𝜁t 𝜖t , (5)

noting that 𝜉t−1 and 𝜁t are independent stationary 1

2
N(0, 1)s. It is clear from (5) that 𝜎 and 𝜙 are scale parameters

of the 𝜉t process and 𝜎 is a scale parameter of the 𝜁t noise process; we see that we can keep the scale of the data
approximately the same by moving 𝜙 and 𝜎 in opposite directions.

For example, Figure 1 shows two data sequences (A and B) of length 1000 generated from two different SV
models, (2)–(3), with (𝜇 = 0, 𝛽 = 1) Model I: 𝜙 = .99, 𝜎 = .15, and Model II: 𝜙 = .95, 𝜎 = .35, both with
normal innovations. The figure also compares the sample ACF of each generated series squared (A and B) and

J. Time Ser. Anal. 42: 186–200 (2021) © 2020 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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188 C. GONG AND D. S. STOFFER
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Figure 1. top: Two data sequences (A and B) of length 1000 generated from different two-parameter SV models, I: 𝜙 = .99,
𝜎 = .15 and II: 𝜙 = .95, 𝜎 = .35. bottom: The ACF of each generated series squared (A and B) and the theoretical ACFs of

SV models I and II as lines. Series A corresponds to Model I and Series B corresponds to Model II

the theoretical counterparts for Models I and II. While the AR parameter, 𝜙, is very different in each model, the
simulated series look very much the same. In addition, the sample ACFs suggest that Series B is from Model I
when in fact it is from Model II.

While CPF-AS can improve the mixing of the sampler for Procedure 1-(ii), it does not address mixing for
Procedure 1-(i). The problem persists to this day as one can see by using the R package stochvol (Kastner and
Hosszejni, 2019). While there are various methods that jointly sample 𝜙 and 𝜎2 (e.g., Kim et al., 1998; Kastner
and Frühwirth-Schnatter, 2014) the samplers do not improve the efficiency because the methods do not exploit the
geometry of the target, which we will address in due course.

As an example of the state of the art, we took an example out of one the vignettes from the stochvol package
previously mentioned (Kastner, 2016). The example used in the vignette is to fit an SV model to the returns of the
daily EUR/CHF exchange rates (the example uses t observational errors). The code we use is taken directly from
the example, and consequently, our display matches the one given in the vignette. Figure 2 shows the results of the
analysis. The top row shows the draws of 𝜙 and 𝜎 in order, the bottom left shows the sample ACF of the traces,
and on the right, there is a scatterplot of the pairs of values in each draw. The poor mixing and inefficiencies in
this example are evident, and it is clear that the slow convergence is due to the chattering (a type of meandering)
through the sample spaces of the parameters.

The effective sample size (ESS), which measures the amount by which the dependence structure of the sampling
routine increases uncertainty in the estimates, was estimated for this example using the mcmc R package (Geyer
and Johnson, 2017) to be ESS = 276 for the 𝜙 trace, and ESS = 109 for the 𝜎 trace. This means that, although the
estimated posteriors would be based on 10,000 samples, the essential sample sizes are less than 3% of the number

wileyonlinelibrary.com/journal/jtsa © 2020 John Wiley & Sons Ltd J. Time Ser. Anal. 42: 186–200 (2021)
DOI: 10.1111/jtsa.12561
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EFFICIENT FITTING OF STOCHASTIC VOLATILITY MODELS 189

Figure 2. The sampling results for 𝜙 and 𝜎 taken directly from an example from the stochvol R package analyzing the daily
EUR/CHF exchange rates. top: Separate draws of 𝜙 and 𝜎 in order of the 10,000 draws after a burn-in of 2000. bottom: The
sample ACF of the traces (left), and a scatterplot (right) of the pairs of values in each draw with the posterior means highlighted.

The ESSs in this case are estimated to be 276 for the 𝜙 trace and 109 for the 𝜎 trace

of draws. The estimated ESS is based on the estimate of inefficiency (IF) as defined in Geyer (1992),

IF ∶= 1 + 2
∞∑

i=1

𝜚(i), (6)

where 𝜚(i) is the autocorrelation function of the trace at lag i. In particular, the estimated ESS is given by the
number of draws divided by the estimate of IF. Random sampling would yield an ESS equal to the number of
draws (or IF = 1) and it is possible to do better than random sampling; details may be found in Shumway and
Stoffer (2017, §1.5).

To improve on efficiency, we propose a new method for SV models by employing a particular bivariate prior
and sampling the parameters jointly from p(𝜙, 𝜎 ∣ x0∶n, y1∶n). The new method reduces the sampling inefficiencies
significantly because it exploits the geometry of the target distribution. A random walk Metropolis algorithm is
used to implement the method. In all of our examples, our MCMC routines use relatively small sample and burn-in
sizes because the gain in efficiency from the proposed method is significant.

2. CONDITIONAL PARTICLE FILTERING WITH ANCESTRAL SAMPLING

For the sake of completeness and before we discuss our method, we present the CPF-AS algorithm that we use to
perform step Procedure 1-(ii). The goal is to repeatedly draw an entire state sequence from the posterior p(x0∶n ∣

J. Time Ser. Anal. 42: 186–200 (2021) © 2020 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12561
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190 C. GONG AND D. S. STOFFER

Θ, y1∶n). To ease the notation, we will drop the conditioning arguments in this section. Many of the details (along
with references) may be found in Lindsten et al. (2014) and Douc et al. (2014, Part III).

For notation, we will denote the proposal density by q(⋅), the target density by p(⋅), and the importance function
(un-normalized weight) by 𝜔 = p∕ q. Every density shown is conditional on parameters Θ and data y1∶t up to time
t. At the end of the procedure, we will have a sample of size N from the target of interest, p(x0∶n ∣ Θ, y1∶n). To keep
the exposition simple, a resampling step that was described in Gordon et al. (1993) and subsequently improved
by others, and an auxiliary adjustment step as described in Pitt and Shephard (1999) are applied appropriately in
the procedures, but we do not explicitly show these steps.

Procedure 2 (Conditional Particle Filter with Ancestral Sampling – [CPF-AS]).
Input: A sequence of conditioned particles x′0∶n as a reference trajectory.

(i) Initialize, t = 0:

(a) Draw xj
0 ∼ q(⋅) for j = 1, … , N − 1 (sample only N − 1 particles).

(b) Set the Nth particle, xN
0 = x′0.

(c) Compute weights 𝜔j
0 ∝ 𝜔0

(
xj

0

)
for j = 1, … , N.

(ii) for t = 1, … , n:

(a) Draw Ij
t ∼ Discrete({𝜔i

t−1}
N
i=1) for j = 1, … , N − 1.

(b) Draw xj
t ∼ q(xt | x

Ij
t

0∶t−1) for j = 1, … , N − 1.
(c) Set xN

t = x′t .
(d) Draw IN

t ∼ Discrete({𝜔i
t−1}

N
i=1) (ancestor sample).

(e) Set xj
0∶t =

(
x

Ij
t

0∶t−1, x
j
t

)
and 𝜔

j
t ∝ 𝜔t

(
x

Ij
t

t−1, x
j
t

)
, for j = 1, … , N.

While other methods exist, we note again that the resulting Markov kernel leaves its target distribution, p(x0∶n ∣
Θ, y1∶n), invariant, regardless of the number of particles (Lindsten et al., 2014) and under general conditions is
uniformly ergodic (Lindsten et al., 2015). Hence, Procedure 2 enables fast mixing of the particle Gibbs kernel
even when using a few particles.

3. PROPOSED METHOD

In the SV model, (2)–(3), 𝛽 and 𝜇 are not both needed. In choosing which parameter to keep, Kim et al. (1998)
argued that allowing 𝜇 to vary and fixing 𝛽 = exp(𝜇∕2) has a better interpretation from an economic point-of-view.
In this section, we will follow their restriction on 𝛽 and allow 𝜇 to vary. It has been our experience, however, that
from a statistical point-of-view, it is better to keep 𝛽 and not use 𝜇. Because 𝛽 is a scale parameter of the obser-
vational innovation sequence, its presence allows forming various wide tail distributions such as the t-distribution
or the Laplacian or double exponential distribution as described in Andrews and Mallows (1974). We explore this
case further in Section 5.

In Section 1, we discussed the problems of applying MCMC methods to SV models. Although various tech-
niques such as CPF-AS exist that help solve some of the slow convergence problems when performing Procedure
1-(ii), we still observe poor mixing in Procedure 1-(i) caused by the inverse dependence between 𝜙 and 𝜎. In this
section, we suggest a method to improve the convergence by exploiting the geometry of the target.

To accomplish this goal, we put a bivariate normal prior with a negative correlation coefficient on the pair
Θ = (𝜙, 𝜎),

(
𝜙
𝜎

)
∼ N2

([
𝜇𝜙

𝜇q

]
,

[
𝜎2
𝜙

𝜌𝜎𝜙𝜎q

𝜌𝜎𝜙𝜎q 𝜎2
q

])
, (7)

wileyonlinelibrary.com/journal/jtsa © 2020 John Wiley & Sons Ltd J. Time Ser. Anal. 42: 186–200 (2021)
DOI: 10.1111/jtsa.12561
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EFFICIENT FITTING OF STOCHASTIC VOLATILITY MODELS 191

where 𝜌 < 0. Allowing possible negative values for 𝜎 is an old trick used in optimization to avoid constraints on
the parameter space and is akin to the use of the Cholesky decomposition when estimating a covariance matrix
to ensure the non-negative definiteness of the matrix. In this case, the draws corresponding to 𝜎2 will always
be non-negative and marginally, has a scaled chi-squared prior distribution. In addition, as is seen in Figure 2,
a bivariate normal prior is sensible because it appears that joint distribution of (𝜙, 𝜎) is elliptically symmetric.
This fact is evident from other examples as will be seen. The proposition of sampling from (7) is in line with the
consideration that exploiting the geometry of the target can improve the efficiency of an MCMC algorithm (Robert
et al., 2018).

Note that we have changed the notation slightly by excluding 𝜇 from Θ = (𝜙, 𝜎) because it may be sampled
separately if necessary. To accomplish Procedure 1-(i), note that,

p(Θ, 𝜇 ∣ x0∶n, y1∶n) ∝ 𝜋(Θ, 𝜇) p(x0 ∣ Θ, 𝜇)
n∏

t=1

p(xt ∣ xt−1,Θ, 𝜇) p(yt ∣ xt,Θ, 𝜇) , (8)

where 𝜋(Θ, 𝜇) is the prior on the parameters. For the generic state space model, the parameters are often taken to
be conditionally independent with distributions from standard parametric families (at least as long as the prior dis-
tribution is conjugate relative to the model specification). In this case, however, we must work with non-conjugate
models, and one option is to replace Procedure 1-(i) with a Metropolis–Hastings step, which is feasible because
the complete data density p(Θ, 𝜇, x0∶n, y1∶n) can be evaluated pointwise.

Under these considerations, for the SV model in (2)–(3), we have

p(Θ ∣ 𝜇, x0∶n, y1∶n) ∝ 𝜋(Θ) p(x0 ∣ Θ, 𝜇)
n∏

t=1

p(xt ∣ xt−1,Θ, 𝜇)

∝ exp

{
− 1

2(1 − 𝜌2)
[
(𝜙 − 𝜇𝜙)2

𝜎2
𝜙

+
(𝜎 − 𝜇𝜎)2

𝜎2
q

−
2𝜌(𝜙 − 𝜇𝜙)(𝜎 − 𝜇𝜎)

𝜎𝜙𝜎q

]
}

⋅

√
1 − 𝜙2

𝜎
exp{−

(x0 − 𝜇)2

2𝜎2∕(1 − 𝜙2)
}

n∏
t=1

1
𝜎

exp

{
−
[(xt − 𝜇) − 𝜙(xt−1 − 𝜇)]2

2𝜎2

}

∝ exp

{
−
(𝜙 − 𝜇𝜙)2𝜎2

q + (𝜎 − 𝜇𝜎)2𝜎2
𝜙
− 2𝜌𝜎𝜙𝜎q(𝜙 − 𝜇𝜙)(𝜎 − 𝜇𝜎)

2(1 − 𝜌2)𝜎2
𝜙
𝜎2

q

}

⋅

√
1 − 𝜙2

𝜎n
exp

{
−
(1 − 𝜙2)(x0 − 𝜇)2 +

∑n
t=1[(xt − 𝜇) − 𝜙(xt−1 − 𝜇)]2

2𝜎2

}
. (9)

As previously suggested, we use a random walk Metropolis step to sample Θ = (𝜙, 𝜎) simultaneously from the
target posterior distribution p(Θ ∣ 𝜇, x0∶n, y1∶n) given in (9). This approach involves choosing a tuning parameter to
control the acceptance probability. However, sometimes a good proposal distribution is difficult to choose because
both the size and the spatial orientation of the proposal distribution should be considered. We have found that
occasionally, the use of an adaptive method can help with the problem and we suggest using a technique that was
presented in Andrieu and Thoms (2008, Alg. 4).

Procedure 3 (Sampling Θ).
Input: An initial value, Θ0, and an initial bivariate normal proposal distribution N2(𝜇0, 𝜆0Σ0).
On iteration j + 1, for j = 0, 1, 2,… ,

(i) Draw 𝜗 ∼ N2(Θj, 𝜆jΣj) and set Θj+1 = 𝜗 with probability 𝛼j+1 = g(𝜗)
g(Θj)

∧ 1, where g(Θ) is given on the rhs of

(9). Otherwise, set Θj+1 = Θj.

J. Time Ser. Anal. 42: 186–200 (2021) © 2020 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12561
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192 C. GONG AND D. S. STOFFER

Algorithm 1 Joint particle Gibbs for stochastic volatility models

Input: Set the initial value of Θ[0] = (𝜙, 𝜎)[0], 𝜇[0], and x[0]0∶n arbitrarily.
At iteration j = 1, 2,… ,

(i) Draw x[j]0∶n by CPF-AS, Procedure 2, conditioned on x[j−1]
0∶n and Θ[j−1], 𝜇[j−1].

(ii) With x[j]0∶n, generate Θ[j] = (𝜙, 𝜎)[j] via Procedure 3 and draw 𝜇[j] from the posterior given in (13) under the

current draws x[j]0∶n and Θ[j].

(ii) [Optional Adaptive Method] Update

log(𝜆j+1) = log(𝜆j) + 𝛾j+1[𝛼j+1 − 𝛼⋆], (10)

𝜇j+1 = 𝜇j + 𝛾j+1(Θj+1 − 𝜇j), (11)

Σj+1 = Σj + 𝛾j+1[(Θj+1 − 𝜇j)(Θj+1 − 𝜇j)′ − Σj], (12)

where 𝛾j is a scalar non-increasing sequence of positive step lengths such that
∑∞

j=1 𝛾j = ∞ and
∑∞

j=1 𝛾
1+𝛿
j < ∞

for some 𝛿 > 0; 𝛼⋆ is the expected acceptance rate for the algorithm.

If Step (ii) is skipped, keep the tuning parameter and the covariance matrix fixed at 𝜆0 and Σ0 respectively.

The optional part makes the algorithm non-Markovian; however, it can adapt continuously to the target dis-
tribution. Both the size and the spatial orientation of the proposal distribution will be adjusted by the adaptation
procedure. Also, Procedure 3 is straightforward to implement and to use in practice. There are no extra computa-
tional costs because only a simple recursion formula for the covariances involved. The algorithm starts by using
the accumulating information from the beginning of the sampling and it ensures that the search becomes more
efficient at an early stage of the sampling. Haario et al. (2001) establish that the adaptive MCMC algorithms do
indeed have the correct ergodicity properties. The hyperparameters in (7) should be chosen with care to ensure
the an optimal acceptance rate of about 28% (see Gelman et al., 1996) and we suggest that 𝜌 be moderately neg-
ative, 𝜌 ∈ (−.6,−.3). In addition, if adaptation is not used, the tuning parameter 𝜆0 should be chosen to maintain
a proper acceptance rate; see Douc et al. (2014, Example 5.37) for more details.

If the parameter 𝜇 is included in the model, using a diffuse prior (e.g., see Kim et al., 1998), we have

𝜇 ∣ Θ, x0∶n, y1∶n ∼ N(𝜈𝜇, 𝜎2
𝜇
) (13)

where

𝜈𝜇 = 𝜎2
𝜇

{
1 − 𝜙2

𝜎2
x0 +

1 − 𝜙

𝜎2

n∑
t=1

(xt − 𝜙xt−1)
}

and

𝜎2
𝜇
= 𝜎2

n(1 − 𝜙)2 + (1 − 𝜙2)
.

Recall that we are fixing 𝛽 = exp(𝜇∕2). Finally, our algorithm for the analysis of a SV model is given in
Algorithm 1.

wileyonlinelibrary.com/journal/jtsa © 2020 John Wiley & Sons Ltd J. Time Ser. Anal. 42: 186–200 (2021)
DOI: 10.1111/jtsa.12561

 14679892, 2021, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12561 by D

avid Stoffer , W
iley O

nline L
ibrary on [31/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



EFFICIENT FITTING OF STOCHASTIC VOLATILITY MODELS 193

Time

S
&

P
50

0 
R

et
ur

ns
 (

%
)

2005 2006 2007 2008 2009 2010 2011 2012

−
10

−
5

0
5

10

Time

Lo
g 

V
ol

at
ilt

iy

2001 2002 2003 2004 2005 2006 2007 2008

−
4

−
2

0
2

4

Time

Lo
g 

V
ol

at
ilt

iy

2001 2002 2003 2004 2005 2006 2007 2008

−
4

−
2

0
2

4

Figure 3. top: Daily returns of the S&P 500 from January 2005 to October of 2011. middle: State process estimated posterior
mean and pointwise 95% credible intervals based on a slow mixing sampler. bottom: State process estimated posterior mean
and pointwise 95% credible intervals based on the proposed method of structured joint parameter sampling, Algorithm 1. The

number of particles used in the particle filter (Procedure 2) for both methods was N = 20

4. EXAMPLES

4.1. Two-Parameter Model

In this section, we fit a two-parameter model (𝜇 = 0) to the daily returns of the S&P 500 from January 2005
to October of 2011 shown at the top of Figure 3. The data include the financial crisis of 2008. We compare two
methods using CPF-AS (Procedure 2) to sample the state process in both. The first method samples the parameters
individually by drawing from the univariate conditionals p(𝜙 ∣ 𝜎, x0∶n, y1∶n) and p(𝜎 ∣ 𝜙, x0∶n, y1∶n) using the typical
normal-inverse gamma conjugate prior for an AR model, while our method exploits the geometry of the target and
samples the parameters jointly as described in Algorithm 1 holding 𝜇 at zero.

In each case, we used N = 20 particles for the CPF-AS (Procedure 2) and 5000 iterations after a burn-in of
100. The posterior mean and a pointwise 95% credible interval of the draws of the state (log-volatility) process are
shown in Figure 3. The middle plot shows the results for the typical method and the bottom plot shows the results
for the proposed method. The results are similar, but the trace of the estimated process via the proposed method
is smoother and less variable than the individual method shown in the middle.

Figure 4 displays the results of the parameter estimation using the one-at-a-time method of sampling 𝜙 and 𝜎.
The top of the figure shows the traces of the sampled values after burn-in. The corresponding posterior means are
about .88 for 𝜙 and .62 for 𝜎. The bottom of the figure shows the sample ACFs of the traces and a scatterplot of
the sampled values. The estimated inefficiencies are displayed with the sample ACFs of traces. We note again the
slow convergence problem seen in the simulation example. Finally, the bottom right scatterplot indicates that the

J. Time Ser. Anal. 42: 186–200 (2021) © 2020 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12561
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Figure 4. (Individual Sampling) S&P 500 results of the parameter estimation in a two-parameter model when 𝜙 and 𝜎 are
sampled separately. The top shows the traces of the 5000 sampled values after a burn-in of 100. The number of particles used
in the particle filter (Procedure 2) was N = 20. The corresponding posterior means are .88 for 𝜙 and .62 for 𝜎. The bottom
left shows the sample ACFs of the traces and the estimated inefficiency measure as defined in (6). The bottom left shows a

scatterplot of the sampled parameters, and exhibits strong negative correlation of −.61

joint posterior of 𝜙 and 𝜎 is elliptical and symmetric with negative orientation. We saw this behavior in Figure 2,
and it seems to be common.

Figure 5 displays the results of the parameter estimation using our structured method, Algorithm 1, jointly sam-
pling 𝜙 and 𝜎 from an elliptically symmetric distribution (specifically, bivariate normal) with negative orientation.
The top of the figure shows the traces of the sampled values after burn-in. The corresponding posterior means are
.80 for 𝜙 and .36 for 𝜎. The bottom of the figure shows the sample ACFs of the traces and a scatterplot of the
sampled values, which shows an improvement of the established method. In fact, the inefficiencies in the typical
sampling method are more than twice a big than in the proposed method.

4.2. Three-Parameter Model

Next, we fit a three-parameter SV model to the S&P 500 series using Algorithm 1; the adaptive part of the Metropo-
lis step, Procedure 3-(ii), was not needed here. To keep the complexity low, we used only N = 10 particles for
sampling the states (Procedure 2), and then generated 2000 samples after a burn-in of 100. The acceptance rate
was nearly optimal at 26.1%.

The results of the parameter estimation are shown in Figure 6; the results for the state estimation are similar to
the lower plot of Figure 3 and are not shown to save space. The figure shows the trace of the draws (top row), the
sample ACF of the draws (middle row) along with the estimated inefficiency, (6), and a histogram of the results

wileyonlinelibrary.com/journal/jtsa © 2020 John Wiley & Sons Ltd J. Time Ser. Anal. 42: 186–200 (2021)
DOI: 10.1111/jtsa.12561
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Figure 5. (Joint Sampling) S&P 500 results of the parameter estimation in a two-parameter model using the proposed method
of sampling 𝜙 and 𝜎 jointly, Algorithm 1. The top shows the traces of the 5000 sampled values after a burn-in of 100. The
number of particles used in the particle filter (Procedure 2) was N = 20. The corresponding posterior means are .85 for 𝜙 and
.45 for 𝜎 and the correlation between the draws is −.55. The bottom shows the sample ACFs of the traces and a scatterplot of
the sampled values, which indicate the sample parameters are uncorrelated. In addition, estimated inefficiency measures are

improved over the counterparts in Figure 4

(bottom row). The posterior means are displayed in the figure and were .85 for 𝜙, .43 for 𝜎 and −.01 for 𝜇. We
note that the results are quite good even using this quick analysis. In fact, the efficiency for estimating 𝜇 in this
case is better than independent sampling (IF = .76). It is also apparent that the previous analysis based on the
two-parameter model (𝜇 = 0) was reasonable.

5. STOCHASTIC VOLATILITY WITH MULTIPLE OBSERVATIONS

It is often reasonable to assume that similar assets are being driven by the same volatility process. In this case, the
model presented in Asai et al. (2006) can be used. The model assumes a univariate volatility process is driving a
number of similar assets and is given by,

xt = 𝜙xt−1 + 𝜎wt (14)

yit = 𝛽i exp
{xt

2

}
𝜖it , i = 1,… , p, (15)

where the yit are the returns of the ith asset, wt
iid∼ N(0, 1), and 𝜖𝜖𝜖t = (𝜖1t,… , 𝜖pt)′

iid∼ Np(0, I). In this model, 𝜇 is
removed to avoid overparameterization and each 𝛽i is a scale parameter for the ith asset.

J. Time Ser. Anal. 42: 186–200 (2021) © 2020 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12561
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Figure 6. S&P 500, results of the parameter estimation in a three-parameter model using the proposed method of sampling 𝜙

and 𝜎 jointly, Algorithm 1. top: Traces of the 2000 sampled values of the parameters after burn-in. middle: Sample ACF of
the draws along with the estimated inefficiency, (6). bottom: Histogram of the results. The posterior means are displayed in

the figure and were .85 for 𝜙, .43 for 𝜎 and −.01 for 𝜇. The correlation between the joint draws of 𝜙 and 𝜎 is −.54

We can easily apply our proposed method to this model. That is, as in the univariate case, we put a bivariate
normal prior on the state parameters, 𝜙 and 𝜎. Then, because 𝛽i, for i = 1,… , p, is a scale parameter, a reasonable
choice is to use independent inverse gamma priors for 𝛽2

i . That is, if 𝛽2
i ∼ IG(ai∕2, bi∕2), then the posterior is

𝛽2
i ∣ Θ, x0∶n, y1∶n ∼ IG

(
1

2
(ai + n + 1), 1

2

{
bi +

n∑
t=1

y2
it

exp(xt)

})
. (16)

Hence, for this model, we can simply add a third step to Algorithm 1, which is to sample 𝛽2
i from (16) for

i = 1,… , p. In addition, the use of an inverse gamma prior on the 𝛽2
i implies the marginal distribution of each

observational innovation is a t-distribution; that is, 𝜖it ∣ 𝛽i ∼ N(0, 𝛽2
i ) and 𝛽2

i ∼ IG(ai∕2, bi∕2) implies 𝜖it has a
t-distribution with location 0, shape ai, and scale bi∕ai as discussed in Andrews and Mallows (1974). We summarize
the steps in Algorithm 2.

For an example, we consider the daily NYSE returns for three banks, Bank of American (BOA), Citigroup (Citi),
and J.P. Morgan (JPM) from January 2005 to November 2017. The data are displayed in Figure 7; also shown is
the estimated log-volatility, which we describe shortly.

We used Algorithm 2 with N = 20 particles to generate 2000 draws after a burn-in of 200 iterations. The
procedure was non-adaptive and the acceptance rate was 29.8%. The parameter estimation summary is displayed
in Figure 8 and the display is similar to the previous examples. The displays suggest that the algorithm is mixing
well. The top shows the traces of the draws for each parameter and indicates the posterior means, .86 for 𝜙, .32

wileyonlinelibrary.com/journal/jtsa © 2020 John Wiley & Sons Ltd J. Time Ser. Anal. 42: 186–200 (2021)
DOI: 10.1111/jtsa.12561
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Figure 7. The daily NYSE returns (as percentages) for three banks, Bank of American (BOA), Citigroup (Citi), and J.P. Morgan
(JPM) from January 2005 to November 2017. bottom: The resulting posterior of the log-volatility based on Algorithm 2.
Shown are the posterior mean and a swatch displaying the limits of 99% of the sampled states. We also display a lowess smooth

as a thin line to emphasize the volatility trend

for 𝜎, and 1.64, 1.62, and 1.42 for the 𝛽s of BOA, Citi, and JPM respectively. The middle plot shows the sample
ACFs of the traces along with the inefficiencies, which are acceptable. The bottom row of Figure 8 displays the
posterior distributions of each parameter along with the location of the posterior mean.

The resulting posterior of the log-volatility is shown at the bottom of Figure 7. Shown are the posterior mean and
a swatch displaying pointwise 99% credible intervals. We also display a lowess fit as a thin line to emphasize the
volatility trend. Notice that the impending financial crisis of 2008 is visible at least one year prior as the volatility
starts a trend upwards just prior to 2007. It seems that there is an advantage to using multiple similar sources to
estimate volatility.

6. CLOSING REMARKS

The conditional particle filter with ancestral sampling (Procedure 2) was a breakthrough for analyzing nonlinear
state space models by establishing a computationally efficient, invariant and uniformly ergodic method of sampling
from the posterior of the hidden state trajectories, Procedure 1-(ii). The method works well for many cases if
drawing from the posterior of the parameters, Procedure 1-(i), is not problematic. Unfortunately, this situation does

J. Time Ser. Anal. 42: 186–200 (2021) © 2020 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12561
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Figure 8. For the bank returns data shown in Figure 7, the results of fitting an MSV model based on Algorithm 2. top: The
traces of the draws for each parameter and indicates the posterior means, .86 for 𝜙, .32 for 𝜎, and 1.64, 1.62, and 1.42 for the
𝛽s of BOA, Citi, and JPM respectively. middle: The sample ACFs of the traces along with the inefficiencies. bottom: The

estimated posterior distributions of each parameter along with the location of the posterior mean

not include the case of stochastic volatility models because in the state equation, the autoregressive parameter (𝜙)
and the noise scale (𝜎) in (2) appear to have an elliptically symmetric distribution with negative orientation.

Prior attempts to handle SV models had less than optimal efficiency because 𝜙 was treated as a regression
parameter while 𝜎 was treated as a scale parameter. Initially, these parameters were sampled individually as they
typically are for state space models. Later, various researchers applied techniques that sampled 𝜙 and 𝜎2 jointly.
These approaches, however, were problematic because the joint distributions do not exploit the elliptical geometry
of the target.

We have presented a method that exploits the geometry of the target by sampling the state parameters jointly
using a bivariate normal distribution. While it is possible that a sampled pair yields values of |𝜙| > 1 or 𝜎 < 0,
it is not a problem. For example, the state process is assumed to be stationary, so realistically, one only needs|𝜙| ≠ 1 (e.g., see Shumway and Stoffer, 2017, Example 3.4), which will not happen (with probability 1 in all but
pathological cases). Also, sampled values of 𝜎2 will always be non-negative.

Although we did not discuss factor models, it seems clear that the method may be extended to the case where the
state variable is a vector of independent volatility factors. In this case, (14) would be vector-valued with indepen-
dent components and the joint distribution of the corresponding 𝜙s and 𝜎s would again be taken to be multivariate
normal.

wileyonlinelibrary.com/journal/jtsa © 2020 John Wiley & Sons Ltd J. Time Ser. Anal. 42: 186–200 (2021)
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Algorithm 2 Joint particle Gibbs for (14)–(15)

Input: Set the initial value of Θ[0] = (𝜙, 𝜎)[0], 𝛽[0]
1∶p, and x[0]0∶n arbitrarily.

At iteration j = 1, 2,… ,

(i) Draw x[j]0∶n by CPF-AS, Procedure 2, conditioned on x[j−1]
0∶n and Θ[j−1].

(ii) With x[j]0∶n, generate Θ[j] = (𝜙, 𝜎)[j] via Procedure 3 and draw 𝛽
2 [j]
1∶p from the posteriors given in (16) under the

current draws x[j]0∶n and Θ[j].

7. DATA AVAILABILITY STATEMENT

We did not supply every particular numerical detail (e.g., hyperparameters and tuning parameters) of our examples
in the text. Instead, for the sake of reproducibility, we supply the data and the R code (R Core Team, 2019) for
every example on GitHub; see Gong and Stoffer (2020) for the url. Additional information may also be found in
Gong (2019). All of our examples were performed using Microsoft R Open (Microsoft and Team, 2019) version
3.5.3, which is the last version available. However, the example from the stochvol R package was done under
vanilla R version 4.0.2.
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