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We propose a method for analyzing possibly nonstationary time series by adaptively dividing the time series into an unknown but finite
number of segments and estimating the corresponding local spectra by smoothing splines. The model is formulated in a Bayesian framework,
and the estimation relies on reversible jump Markov chain Monte Carlo (RJMCMC) methods. For a given segmentation of the time series,
the likelihood function is approximated via a product of local Whittle likelihoods. Thus, no parametric assumption is made about the process
underlying the time series. The number and lengths of the segments are assumed unknown and may change from one MCMC iteration to
another. The frequentist properties of the method are investigated by simulation, and applications to electroencephalogram and the El Niño
Southern Oscillation phenomenon are described in detail.
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1. INTRODUCTION

Many time series are realizations of nonstationary random
processes, hence estimating their time-varying spectra may pro-
vide insight into the physical processes that give rise to these
time series. For example, electroencephalogram (EEG) time se-
ries are typically nonstationary, and estimating the time-varying
spectra based on the EEG of epilepsy patients may lead to meth-
ods capable of predicting seizure onset. Similarly, analyzing the
time-varying spectrum of the Southern Oscillation Index (SOI)
may further our knowledge of the frequency of the El Niño
Southern Oscillation (ENSO) phenomenon and its impact on
global climate.

This article proposes methodology for analyzing possibly
nonstationary time series by adaptively dividing the time series
into an unknown but finite number of segments and estimat-
ing the corresponding local spectra by smoothing splines. The
model is formulated in a Bayesian framework, and the estima-
tion relies on reversible jump Markov chain Monte Carlo (RJM-
CMC) methods. For a given segmentation of the time series, the
likelihood function is approximated via a product of local Whit-
tle likelihoods. Thus, no parametric assumption is made about
the process underlying the time series. The number of segments
and the length of each segment are assumed unknown and may
change from one MCMC iteration to another.

The basic assumptions of the model are that, conditional on
the location and number of segments, the time series is piecewise
stationary and that the spectrum for each segment is smooth.
A detailed description of the model is given in Section 3. In
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addition to representing time series that have regime changes,
the model can be used to approximate slowly varying processes
such as locally stationary processes defined in Dahlhaus (1997),
or time-varying autoregressive (AR) processes for which the
parameters are allowed to vary slowly with time; see Adak
(1998) for details.

Several authors have considered the estimation of locally sta-
tionary processes under a variety of assumptions. The estimators
that were developed by Dahlhaus (1997) for his evolutionary
spectra are consistent, but the method is not computationally
efficient and can be problematic when the time series is long.
Chiann and Morettin (1999) proposed a wavelet-based version
of the estimator proposed by Dahlhaus (1997). Various other ap-
proaches have been suggested to overcome the computational
difficulty. Ombao et al. (2001) proposed nonparametric esti-
mators based on smooth local exponential functions. Guo et al.
(2003) extended the work of Ombao et al. (2001) to allow for si-
multaneous smoothing in both the time and frequency domains.

Qin and Wang (2008) used the basic method of Guo et al.
(2003) and focused on applying it to the analysis of EEG time
series. Our method also estimates a time-varying spectral den-
sity but differs from Qin and Wang (2008) in three important
ways. First, our approach assumes no prespecified time inter-
vals over which the process is considered locally stationary.
Instead, our technique uses the data to determine the size and
location of the piecewise stationary time intervals. Second, our
estimate of the time-varying spectrum is computed by averag-
ing over a range of smoothing parameters, where the averaging
is with respect to the posterior density of the smoothing pa-
rameters. In contrast, Qin and Wang (2008) estimated a single
value of the smoothing parameter, which is then plugged in
to estimate the time-varying spectrum. Using a single value
for the smoothing parameter rather than averaging over val-
ues of the smoothing parameter results in a wider range of
estimates, as demonstrated in Section 4. Third, our approach
can capture abrupt changes as well as recover changes that oc-
cur more gradually. In Section 4.2, we show that although our
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approach is piecewise, conditional on a specific partition, it is
not necessarily piecewise, unconditional on the partition points,
due to the uncertainty surrounding the number and location of
the partition points. Indeed, it will only be piecewise station-
ary if the posterior probability that a partition point occurs at a
specific time is equal to 1, for all partition points.

Rosen, Wood, and Stoffer (2009) estimated the log of the lo-
cal spectrum using a Bayesian mixture of splines. The basic idea
of this approach is to first partition the data into small sections.
It is then assumed that the log spectral density of the evolu-
tionary process in any given partition is a mixture of individual
log spectra. A mixture of smoothing splines model with time-
varying mixing weights is used to estimate the evolutionary log
spectrum. The mixture model is fit using MCMC techniques that
yield estimates of the log spectra of the individual subsections.
In contrast to Rosen, Wood, and Stoffer (2009), the current arti-
cle does not use predetermined partitions. Rather, it adaptively
divides the time series into segments of variable lengths, render-
ing the mixture model unnecessary. In addition to more accurate
estimation, this also leads to computational saving.

Analyzing locally stationary time series can also be done in
the time domain. Kitagawa and Akaike (1978) suggested fitting
piecewise AR models. Wood, Rosen, and Kohn (2011) pro-
posed a class of models for analyzing possibly nonstationary
time series, formed as a mixture of AR models with a com-
mon but unknown lag, whose mixing weights are a function
of time. The model parameters, including the number of mix-
ture components, are estimated via MCMC methods. Lau and
So (2008) used a Dirichlet process mixture of AR processes
to flexibly model the predictive density of a time series. Their
approach does not handle structural breaks in the time series
and their mixture weights are not functions of time. Davis et al.
(2006) suggested fitting piecewise AR models using minimum
description length and a genetic algorithm for solving the diffi-
cult optimization problem. Although Davis et al. (2006) showed
that their simulation results for a few locally (and piecewise) sta-
tionary AR models perform better than those of Ombao et al.
(2001), it is clear that, generally, a parametric technique will out-
perform a nonparametric technique when the parametric model
is correct.

A different time-domain approach is to model the parame-
ter evolution over time. An excellent treatment of the problem
based on state-space models with smoothness priors is the in-
fluential text by Kitagawa and Gersch (1996). This approach
was expanded upon by many authors, for example, West, Prado,
and Krystal (1999) allowed the parameters of an AR process to
change over time by modeling them as a random walk, assuming
that the maximum lag in the AR process is fixed. This assump-
tion was relaxed by Prado and Huerta (2002). Gerlach, Carter,
and Kohn (2000) provided a sampling scheme that allows for
smooth parameter evolution, as well as structural breaks in the
parameters.

The article is organized as follows. Sections 2 and 3 present
the model and priors for stationary and nonstationary time se-
ries, respectively. Section 4 outlines the proposed Bayesian in-
ference as well as provides illustrative examples. Section 5 re-
ports results of a simulation study, and Section 6 illustrates the
methodology with the analysis of EEG data and indicators for
the ENSO phenomenon.

2. SPECTRAL ESTIMATION FOR STATIONARY TIME
SERIES

2.1 Model

Our approach to the problem of estimating local spectra is
best understood by first explaining the technique for estimat-
ing the spectral density of a stationary process. Suppose that a
stationary time series, {Xt }, has a bounded positive spectral den-
sity, f (ν), for −1/2 < ν ≤ 1/2. Given a realization, x1, . . . , xn,
the periodogram of the data at frequency ν (measured in cycles
per unit time) is

In(ν) = 1

n

∣∣∣∣∣
n∑

t=1

xt exp(−2π iνt)

∣∣∣∣∣
2

.

Let νk = k/n, for k = 0, . . . , n − 1, be the Fourier frequen-
cies. Whittle (1957) showed that, under appropriate condi-
tions, for large n the likelihood of x = (x1, . . . , xn)′, given
f = (f (ν0), . . . , f (νn−1))′, can be approximated by

p(x|f ) = (2π )−n/2
n−1∏
k=0

exp

{
−1

2
[log f (νk) + In(νk)/f (νk)]

}
.

(1)

Note that in Equation (1), there are only [n/2] + 1 distinct
observations since the spectral density and the periodogram are
both even functions of ν. The notation [n] means the largest
integer less than or equal to n. For ease of notation, in what
follows, we assume that n is even. Assuming yn(νk) = log In(νk)
and g(νk) = log f (νk), the representation (1) suggests the log-
linear model

yn(νk) = g(νk) + εk, (2)

where the εk’s are independent, εk ∼ log(χ2
2 /2) for k =

1, . . . , n/2 − 1, and εk ∼ log(χ2
1 ) for k = 0, n/2. Represen-

tation (2) was used by a number of authors for nonparamet-
ric estimation of the log spectral density. For example, Wahba
(1980) used a frequentist approach for estimating g(ν) via cu-
bic smoothing splines. Carter and Kohn (1997) achieved the
same goal in a Bayesian framework by expressing Equation (2)
in a state-space form. Carter and Kohn (1997) approximated
the error distribution in (2) by a mixture of five normal densi-
ties and introduced latent component indicators to facilitate the
estimation.

Rather than using (2) for estimating g(ν), we use (1) di-
rectly. The next section provides details on the prior distributions
placed on g(ν).

2.2 Priors

To place a prior on g(νk), we follow Wahba (1990, p.16), and
express g(νk) as the sum of its linear and nonlinear components,
so that

g(νk) = α0 + α1νk + h(νk),

where h(νk) is the nonlinear component. We place a linear
smoothing spline prior on the vector h = (h(ν0), . . . , h(νn/2))′,
which means that

h(ν) = τ

∫ ν

0
W (v)dv,
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where W is a Wiener process, or, equivalently, h ∼ N (0, τ 2�),
where τ 2 is a smoothing parameter and (�)ij = min(νi, νj ). The
parameters α0 and α1 are the values of g(ν) and its first deriva-
tive at ν = 0, respectively. The symmetry and periodicity of the
spectral density mean that (∂g(ν)/∂ν)|ν=0 = 0. Accordingly, α1

is set to be identically zero, and the prior on α0 is N (0, σ 2
α ), for

some large σ 2
α . To complete the prior specification on g(ν), we

follow Gelman (2006) and assume τ 2 ∼ U (0, cτ 2 ), where cτ 2

is a known large value. We express h as a linear combination
of basis functions, h = Xβ, where the columns of the design
matrix X are the Demmler–Reinsch basis functions evaluated
at the Fourier frequencies, and β is a vector of unknown coeffi-
cients. We follow Wood, Jiang, and Tanner (2002) and Rosen,
Wood, and Stoffer (2009) and retain only the basis functions
corresponding to the J = 10 largest eigenvalues, resulting in
significant computational saving. For linear smoothing splines,
the jth column of X , j = 1, . . . , J , is

√
2 cos(jπν) (see Eubank

1999), where ν = (ν0, . . . , νn/2)′. The prior on β is N (0, τ 2IJ ),
where IJ is a J × J identity matrix.

2.3 Sampling Scheme

The parameters α0, β, and τ 2 are drawn from the posterior
distribution p(α0, β, τ 2| y), where y = (yn(ν0), . . . , yn(νn/2))′,
using MCMC methods, as follows.

1. α0 and β are sampled jointly via a Metropolis–Hastings
(M–H) step from

p(α0,β|τ 2, y, X)

∝ exp

{
− 1

2

n−1∑
k=0

[α0 + x′
kβ + exp(yn(νk) − α0 − x′

kβ)]

− α2
0

2σ 2
α

− 1

2τ 2
β ′β

}
, (3)

where x′
k is the kth row of X .

2. τ 2 is sampled from the truncated inverse gamma distribu-
tion, IG(J/2 − 1, 1

2β ′β), whose density is

p(τ 2|β) ∝ (τ 2)−J/2 exp

(
− 1

2τ 2
β ′β

)
, τ 2 ∈ (0, cτ 2 ].

(4)

3. SPECTRAL ESTIMATION FOR NONSTATIONARY
TIME SERIES

3.1 Model

To describe our proposed model, let a time series consist of an
unknown number of segments, m, and let ξj,m be the unknown
location of the end of the jth segment, j = 1, . . . , m, where ξ0,m

and ξm,m are t = 0 and t = n, respectively. Then, conditional on
m and ξm = (ξ0,m, . . . , ξm,m)′, we assume that the process {Xt }
is piecewise stationary. That is,

Xt =
m∑

j=1

X
(j )
t δj,m(t), (5)

where, for j = 1, . . . , m, the processes X
(j )
t are independent

and stationary with spectral density fj,m(ν), and δj,m(t) = 1 if
t ∈ [ξj−1,m + 1, ξj,m] and 0 otherwise.

Consider a realization x = (x1, . . . , xn)′ from process (5),
where the number and locations of the stationary segments are
unknown. Let nj,m be the number of observations in the jth
segment. We assume that nj,m ≥ tmin, where tmin is taken to be
large enough in order for the local Whittle likelihood to provide
a good approximation to the likelihood. Given a partition of
the time series x, the jth segment consists of the observations
xj,m = {xt : ξj−1,m + 1 ≤ t ≤ ξj,m}, j = 1, . . . , m, with under-
lying spectral densities fj,m and periodograms Inj,m

, evaluated
at frequencies νkj

= kj/nj,m, 0 ≤ kj ≤ nj,m − 1. For a given
partition ξm, the approximate likelihood of the time series is
thus

L(f1,m, . . . , fm,m|x, ξm) =
m∏

j=1

(2π )−nj,m/2
nj,m−1∏
kj =0

× exp

{
− 1

2
[log fj,m(νkj

) + Inj,m
(νkj

)/fj,m(νkj
)]

}
.

Prior distributions are placed on all the parameters, including
the number of segments, m, and the partition, ξm.

3.2 Priors

For a given number of segments, m, the following priors are
used.

1. The priors on the log spectra gj,m(ν) = log fj,m(ν), j =
1, . . . , m, are assumed to be independent and are as given
in Section 2.2.

2. The prior on the partition ξm is

Pr(ξm|m) =
m−1∏
j=1

Pr(ξj,m|ξj−1,m,m),

where Pr(ξj,m = t |m) is a discrete uniform such that

Pr(ξj,m = t |m) = 1/pjm

for j = 1, . . . , m − 1. The number of available locations
for partition point ξj,m is denoted by pjm and is equal to
n − ξj−1,m − (m − j + 1)tmin + 1. This prior states that
the first partition point ξ1,m is equally likely to occur at any
point in the time series subject to the constraint that there
are at least tmin observations in each of the m segments. The
prior on subsequent partition points is similar and states
that, conditional on the previous partition point, the next
partition point is equally likely to occur in any available
location, again subject to the constraint that there are at
least tmin observations in each segment. We believe that
this prior is intuitively appealing, but our framework can
accommodate other priors for the partition points.

The prior on the number of segments is a discrete uniform
with a maximum number M, so that Pr(m = k) = 1/M for k =
1, . . . , M . Typically, M is chosen to be large enough to capture
all visible locally stationary segments but if, after running the
procedure, we find that Pr(m = M|x) 	≈ 0, then we increase M.
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4. BAYESIAN INFERENCE

4.1 Sampling Scheme

Each MCMC iteration consists of two types of moves, within-
model moves and between-model moves. An outline of the sam-
pling scheme follows. Further details are given in the Appendix.

4.1.1 Within-Model Moves. Given a current number of seg-
ments mc, a single partition point ξk∗,mc is proposed to be relo-
cated. The corresponding basis function coefficients in the pair
of adjacent segments affected by the relocation of the partition
point are then updated. These two steps are jointly accepted or
rejected in an M–H step. The smoothing parameters are then
updated in a Gibbs step as in Equation (4). See the Appendix
for details.

4.1.2 Between-Model Moves. The number of segments is
either proposed to increase by 1 (birth) or decrease by 1 (death),
so that mp = mc + 1 or mp = mc − 1, respectively.

• If a birth is proposed (mp = mc + 1), then an additional
partition point is drawn by first selecting a segment to split
and then selecting the new partition point from within this
segment. Finally, two new smoothing parameters for the
new segments are formed from the current single smooth-
ing parameter, and conditional on these new smoothing
parameters, two new sets of basis function coefficients are
drawn.

• If a death is proposed (mp = mc − 1), then a partition point
is selected to be removed. A single new smoothing pa-
rameter is then formed from the adjacent pair of current
smoothing parameters, and conditional on the new smooth-
ing parameter, a new set of basis function coefficients is
proposed.

4.2 Illustrative Examples

To illustrate the methodology and to demonstrate that our
approach can capture changes that occur smoothly as well as
abruptly, we present results based on single realizations from a
piecewise AR process and a slowly varying AR process. The

model is fitted to the data with a total of 10,000 iterations, 2000
of which are used as burn-in. The value of tmin is set to 40, and
the number of the spline basis functions is set to 10.

4.2.1 Piecewise AR process. A realization is drawn from
the process

xt =
⎧⎨⎩

0.9xt−1 + ε
(1)
t , for 1 ≤ t ≤ 300,

−0.9xt−1 + ε
(2)
t , for 301 ≤ t ≤ 600,

1.5xt−1 − 0.75xt−2 + ε
(3)
t , for 601 ≤ t ≤ 1000,

(6)

where ε
(i)
t

iid∼ N (0, 1), i = 1, 2, 3. Figure 1 presents a realization
from model (6).

Figure 2 displays the three true log spectral densities (solid
line) corresponding to model (6), along with the spline fits
(dashed). The posterior probability of three segments is 99.75%.
The posterior means of the partition points are ξ̂1,3 = 300.5 and
ξ̂2,3 = 597.9.

4.2.2 Slowly Varying AR Process. We now illustrate how
AdaptSPEC can model time series that change slowly over time
as well as those time series in which there is an abrupt change.
We generate one realization from each of the models

xt = atxt−1 + εt , where at = −0.5 + t/500

for t = 1, . . . , 500, and (7)

xt = atxt−1 + εt , where at =
{−0.5, for t ≤ 250,

0.5, for t > 250,
(8)

where εt ∼ N (0, 1). In Figure 3, panel (a) shows a realization
from model (7), and panel (b) displays the coefficient at as a
function of t. Panels (c) and (d) display analogous plots corre-
sponding to model (8). Panels (a) and (b) of Figure 4 show the
posterior distributions of the number of segments for models (7)
and (8), respectively. Figure 5 shows in panel (a) the estimated
posterior distribution of the partition point, P̂ (ξ1,2 = t | x), and
in panel (b), the estimated cumulative distribution function (cdf)
of the partition point, P̂ (ξ1,2 < t | x), for model (7). Panels (c)
and (d) show the analogous plots corresponding to model (8).
Figure 5 shows that when the time series changes slowly, so

0 100 200 300 400 500 600 700 800 900 1000
−10

−8

−6

−4

−2

0

2

4

6

8

t

xt

Figure 1. A realization from model (6). The online version of this figure is in color.
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Figure 2. Log spectral densities (solid) and their estimates (dashed) for model (6). The online version of this figure is in color.

too does the probability that the change occurs before time t,
while when the time series changes abruptly, the cdf of the par-
tition point is a step function. The reason for this is that even
though our model is a piecewise model, conditional on the parti-
tion point, our technique can recover slowly varying time series
by averaging over the possible locations of the partition point.
When the posterior probability of the partition point is concen-
trated on a few values, then the average is taken over only those
few values, while if the posterior probability of the partition
point has support across the entire time series, then the average
is taken across all those values.

5. SIMULATION STUDY

To evaluate our methodology, we consider various models
and simulate 50 datasets from each. To fit each dataset, a total

of 10,000 iterations are used with a burn-in period of 2000
iterations. For each dataset, the number of basis functions is set
to 10, and the maximum number of segments is set to 4, except
in Section 5.3, where it is set to 8. To judge the quality of the
estimated spectra, we compute the mean squared error

MSE = {n(K + 1)}−1
n∑

t=1

K∑
k=0

{log f̂ (t, νk) − log f (t, νk)}2,

where K is set to 50.

5.1 Stationary AR(3) Process

This section demonstrates that AdaptSPEC can be used even
if the time series is stationary. The stationary process used
for this simulation is taken from Qin and Wang (2008) and is

0 100 200 300 400 500
−4

−2

0

2

4

t

xt

(a)

0 100 200 300 400 500
−4

−2

0

2

4

t

xt

(c)

0 100 200 300 400 500

−0.5

−0.25

0

0.25

0.5

t

at

(b)

0 100 200 300 400 500

−0.5

−0.25

0

0.25

0.5

t

at

(d)

Figure 3. Panels (a) and (b): plots of xt and at , respectively, corresponding to model (7); panels (c) and (d): analogous plots corresponding to
model (8). The online version of this figure is in color.
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Figure 4. Panels (a) and (b): the estimated posterior distributions of the number of segments for models (7) and (8), respectively. The online
version of this figure is in color.

given by

xt = 1.4256xt−1 − 0.7344xt−2 + 0.1296xt−3 + εt , (9)

where εt

iid∼ N (0, 1), t = 1, . . . , 256.
Figure 6, panel (a), displays the theoretical time-varying log

spectrum for model (9). Panels (b)–(d) are the estimated time-
varying log spectra corresponding to the 10th, 50th, and 90th
percentiles of the MSE values. The median of the MSE val-
ues and their interquartile range (IQR) are 0.06 and 0.04, re-
spectively, which is indistinguishable from the results obtained

using the DM estimator in Qin and Wang (2008). Their DM
estimator was chosen for comparison because it gave the mini-
mum MSE for this simulation setting. Although the median and
IQR for the MSE values based on AdaptSPEC are very close
to those obtained in Qin and Wang (2008), the DM estimator
produces more variable estimates than those presented in this
article. We note that our comparable results were achieved with-
out the assumption of stationarity. In contrast, the results for this
setting in Qin and Wang (2008) assumed stationarity. The es-
timate P̂r(m = 1|x) can be considered to be an estimate of the

Figure 5. Panels (a) and (b): plots of P̂ (ξ1,2 | x) and P̂ (ξ1,2 < t | x), respectively, corresponding to model (7); panels (c) and (d): analogous
plots corresponding to model (8). The online version of this figure is in color.
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Figure 6. Panel (a): true time-varying log spectrum of model (9). Panels (b)–(d): estimated time-varying log spectra corresponding to the
10th, 50th, and 90th percentiles of MSE, respectively.

probability that the process is stationary. For this simulation,
the median of this estimated probability is equal to 0.99, while
the first and third quartiles are 0.93 and 1.00, respectively. These
results indicate that if the true process is stationary, AdaptSPEC
does not overfit by dividing the time series into more than one
segment.

5.2 Comparison With Rosen, Wood, and Stoffer (2009)

In this section, we compare the performance of AdaptSPEC,
for tmin values of 20, 40, and 60, with the method of Rosen,
Wood, and Stoffer (2009), which will be referred to as RWS09
in what follows. We simulate data from two processes used in
Rosen, Wood, and Stoffer (2009), given by

xt = atxt−1 − 0.81xt−2 + εt , for t = 1, . . . , 1024, (10)

where at = 0.8(1 − 0.5 cos(πt/1024)) and εt

iid∼ N (0, 1), and

xt =
⎧⎨⎩

0.9xt−1 + εt , if 1 ≤ t ≤ 512,

1.69xt−1 − 0.81xt−2 + εt , if 513 ≤ t ≤ 768,

1.32xt−1 − 0.81xt−2 + εt , if 769 ≤ t ≤ 1024,

(11)

where εt

iid∼ N (0, 1). Models (10) and (11) represent a slowly
varying process and a piecewise AR process, respectively. Panel
(a) of Figure 7 presents boxplots of the MSE values for Adapt-
SPEC for tmin = 20, 40, 60 and for RWS09 corresponding to
model (10). Panel (b) of Figure 7 presents analogous boxplots
corresponding to model (11). Figure 7 shows that the estimates
of the log spectra obtained using AdaptSPEC are superior to
those obtained using RWS09 for both the slowly varying AR(2)
process as well as for the piecewise AR process. The value of
tmin has no significant effect on the MSE values.

5.3 Frequentist Properties of the Partition Estimate

In this section, we focus on the estimation of the partition,
that is, the number and location of the partition points. To this
end, we use two piecewise AR models, model (11) above and

the following model from Wood, Rosen, and Kohn (2011)

xt =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑6
k=1 φk1xt−k + σ1ε

(1)
t , for 1 ≤ t ≤ 200,∑6

k=1 φk2xt−k + σ2ε
(2)
t , for 201 ≤ t ≤ 1000,∑6

k=1 φk3xt−k + σ3ε
(3)
t , for 1001 ≤ t ≤ 1300,∑6

k=1 φk4xt−k + σ4ε
(4)
t , for 1301 ≤ t ≤ 1600,∑6

k=1 φk5xt−k + σ5ε
(5)
t for 1601 ≤ t ≤ 2000,

(12)

with parameter values given in Table 1. A realization from model
(12) is displayed in Figure 8.

The simulation setting is as before except that in this section
the maximum number of segments is set to 8. Figure 9, panel
(a) presents the estimated posterior probability of the number
of segments versus the number of segments for each of the
50 simulated samples from model (11). Panel (b) presents the
analogous plot for model (12). It is evident that most of the 50
estimated posterior probabilities P̂r(m = 3|X) and P̂r(m = 5|X)
under models (11) and (12), respectively, are greater than 0.9.
Figure 10, panel (a) displays density histograms of the esti-
mated posterior means, Ê(ξj,3|X) for j = 1, 2, corresponding
to model (11). The dotted vertical lines are plotted at ξ1,3 = 512
and ξ2,3 = 768. Panel (b) displays similar density histograms
of Ê(ξj,5|X), j = 1, 2, 3, 4, corresponding to process (12),
with (ξ1,5, ξ2,5, ξ3,5, ξ4,5) = (200, 1000, 1300, 1600). Both pan-
els show that our method correctly identifies the locations of the
breaks in the time series.

Table 1. Parameter values for model (12)

j φ1j φ2j φ3j φ4j φ5j φ6j σj

1 0.89 −0.85 0.25 −0.65 0.32 −0.33 0.04
2 0.70 −0.55 0.315 −0.63 0.11 −0.103 0.02
3 1.34 −1.37 0.895 −0.96 0.58 −0.42 0.07
4 0.98 −0.86 0.43 −0.61 0.20 −0.16 0.03
5 0.80 −0.68 0.25 −0.57 0.17 −0.27 0.02
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Figure 7. Panel (a): boxplots of the MSE values corresponding to model (10) based on AdaptSPEC (for tmin = 20, 40, 60) and on RWS09.
Panel (b): analogous boxplots corresponding to model (11). The online version of this figure is in color.
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Figure 8. A realization from model (12). The online version of this figure is in color.

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Segments

Po
ste

rio
r P

ro
ba

bil
ity

(b)

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Segments

Po
ste

rio
r P

ro
ba

bil
ity

(a)

Figure 9. Panel (a): posterior probability of the number of segments versus the number of segments for each of the 50 samples from model
(11). Panel (b): analogous plot corresponding to model (12). The online version of this figure is in color.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 O

f 
Pi

tts
bu

rg
h]

 a
t 1

5:
46

 2
5 

Ja
nu

ar
y 

20
13

 



Rosen, Wood, and Stoffer: AdaptSPEC: Adaptive Spectral Estimation for Nonstationary Time Series 1583

Figure 10. Panel (a): density histograms of the posterior means of the partition points for a model with three segments, based on each of the
50 samples from model (11). The dotted vertical lines denote the true partition points. Panel (b): analogous plot corresponding to model (12).
The online version of this figure is in color.

6. APPLICATIONS

In this section, we apply our method of estimating the time-
varying spectrum to two examples. The first example is the
intracranial EEG time series (IEEG) of an epileptic patient with
medicine-resistant mesial temporal lobe epilepsy and the second
is the ENSO phenomenon.

6.1 IEEG

The analysis of IEEG time series in the period prior to the
onset of an epileptic seizure, known as the preictal period, has
been an active area of research over the last decade (Mormann
et al. 2005). The motivation for this research has been to predict
the onset of an epileptic seizure by developing methods that
can distinguish between the preictal period and the interictal
period (the period between seizures) using IEEG time series. If
this could be achieved, the benefits to patients who suffer from
epilepsy would be enormous. Advance warning of an epileptic
seizure would minimize injury and give sufferers a sense of
control in their management of the disease.

Most approaches to seizure prediction attempt to identify a
preictal state by comparing summary statistics from a univariate
or multivariate IEEG time series at different user-specified time
intervals and classifying the time interval as either a preictal or
interictal state (Andrzejak et al. 2009). For example, Andrzejak
et al. (2009) studied a collection of bivariate features of an IEEG
time series for windows of lengths 1 and 5 min.

Other approaches by Aksenova, Volkovych, and Villa (2007)
and Temuçin, Tokçaer, and Bilir (2005) discriminate between
the preictal and interictal periods by monitoring changes in the
spectral density of the IEEG time series rather than specific
characteristics of the time series or spectrum because spectral
instabilities might carry more information for seizure antici-
pation than increases or decreases in a specific physical vari-
able derived from EEG recordings (Aksenova, Volkovych, and
Villa 2007). Aksenova, Volkovych, and Villa (2007) assumed
that the IEEG time series is a locally stationary process with
abrupt changes (piecewise stationary) and computed an index
that measures the degree of instability of a process. If this index

exceeds some individual specific predetermined threshold, they
conclude that the preictal period has begun.

Modeling the time-varying spectrum of IEEG time series cap-
tures both the instability of the spectrum across time as well as
the difference in features of the spectrum at a given time. Qin and
Wang (2008) is an example of such an approach. Qin and Wang
(2008) assumed that the IEEG time series is locally station-
ary and estimated the time-varying spectrum nonparametrically
using smoothing spline ANOVA, as in Guo et al. (2003). To
estimate the smoothing parameters, Qin and Wang (2008) used
generalized maximum likelihood and generalized approximate
cross-validation. They partition the data into 64 time blocks and
select 32 equally spaced frequency points to compute the locally
stationary periodograms. Guo et al. (2003) noted that one po-
tential limitation of our approach is its smoothness assumption,
which cannot handle abrupt jumps in the time-varying spectrum.

The data were collected by the EEG Lab of the University
of Pennsylvania (D’Alessandro et al. 2001) and are shown in
Figure 11. The data consist of 5-min interval IEEG time series
from two channels taken at different times and were analyzed
by Qin and Wang (2008). The signal was sampled at the rate
of 200 signals per second, so that each time series consists of
60,000 observations. Panels (a) and (c) of Figure 11 are the
IEEG time series taken from channels 1 and 2, respectively,
during the preictal period, which in this example was taken to
be 5 min prior to the onset of a known seizure. Panels (b) and
(d) are similar plots of 5-min intervals of the IEEG time series
extracted at least 4 hr prior to seizure onset and are therefore
representative of the interictal period. Figure 12 shows the time-
varying spectra for the four time series. From Figures 11 and
12, it can be seen that the spectra of the IEEG series for the two
channels during the interictal periods are markedly different
from the spectra during the preictal periods and different from
each other.

Given the large number of observations in each time series,
the maximum number of segments, M, was set at 12. Table 2
shows the posterior probability of the number of segments for
each of the time series, while Figure 11 also shows the partition
points (dotted lines) corresponding to the modal number of
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Figure 11. Plots of the IEEG time series. Panel (a) is the IEEG time series for a 5-min time interval immediately prior to seizure onset for
channel 1. Panel (c) is an analogous plot for channel 2. Panel (b) is a plot of a 5-min interval of the IEEG time series extracted at least 4 hr prior
to seizure onset for channel 1, and panel (d) is an analogous plot for channel 2. The dotted lines represent the partition points corresponding to
the modal number of segments for each time series. The online version of this figure is in color.

segments for each series. For both channels, the modal number
of segments for the preictal period is 6.

The spectra for the initial locally stationary segment (t < 100
sec) of the preictal period for both channels display character-
istics typical of preseizure spectra documented in the literature.
There is an increase in power at a frequency of 60 Hz and again
at 85 Hz. This is consistent with the findings of Niederhauser
et al. (2003) who found that the frequency components in the
range 25–60 Hz appear before a seizure, and with Rampp and
Stefan (2006) who found that there is a specific association
of high-frequency oscillations (in the range 80–500 Hz) with
an epileptic network function. The estimated spectra during this
first segment are different from those estimated by Qin and Wang

Table 2. Posterior probability of number of segments for two
channels during the preictal period and the interictal period

Preictal Interictal
Number of
segments Channel 1 Channel 2 Channel 1 Channel 2

3 0.00 0.00 0.99 0.00
4 0.00 0.00 0.01 0.00
5 0.00 0.07 0.00 0.00
6 0.98 0.59 0.00 0.00
7 0.02 0.34 0.00 0.00
8 0.00 0.00 0.00 0.06
9 0.00 0.00 0.00 0.85

10 0.00 0.00 0.00 0.08
11 0.00 0.00 0.00 0.01

(2008) during a similar period. Our estimate exhibits very pro-
nounced fluctuations in power at high frequency for both chan-
nels, while the estimate of Qin and Wang (2008) shows only
slight fluctuations in power for channel 1 and no fluctuations in
power for channel 2. This may be because the method of Qin and
Wang (2008) oversmooths and therefore cannot capture these
fluctuations.

The spectra for the segment 100 sec < t < 150 sec, of the
preictal period in both channels (Figure 12, panels (a) and (c)),
are distinguished from the spectra for the first segment by an
increase in power at low frequencies (in the range 10–50 Hz).
This is consistent with the findings of Qin and Wang (2008),
although Qin and Wang (2008) refer to this increase in power at
low frequencies as a power build-up and the plots of their time-
varying spectra indicate that this power build-up is gradual. In
contrast, our method suggests that this increase occurs abruptly.
From visual inspection of the time series, it appears that the
change in the time series is abrupt rather than gradual, so that
the gradual increase estimated in Qin and Wang (2008) may be
due to oversmoothing.

The duration of this power surge at low frequencies during the
preictal period is approximately 20 sec for channel 1 and 7 sec
for channel 2. Following this surge, the spectra for t > 150 sec,
of the preictal period for both channels, revert back to the spectra
of the initial locally stationary segment. Afterward, there is
a brief power surge at very low frequencies (< 10 Hz) and
high frequencies (>70 Hz), which occurs approximately 12 sec
before seizure onset. However, this second surge lasts for only
1 sec.
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Figure 12. Plots of the time-varying spectrum of the IEEG time series. Panel (a) is the time-varying spectrum for the IEEG time series for
a 5-min time interval immediately prior to seizure onset for channel 1. Panel (c) is an analogous plot for channel 2. Panel (b) is a plot of the
time-varying spectrum for the IEEG time series for a 5-min interval extracted at least 4 hr prior to seizure onset for channel 1 and panel (d) is an
analogous plot for channel 2.

The spectrum for the interictal period in channel 1 (Figure 12,
panel (b)) does not have the fluctuations in power at high fre-
quencies, which characterize the spectra of the preictal pe-
riod for both channels, and while the spectrum of channel 2
(Figure 12, panel (d)) shows slight fluctuations, these are not
as pronounced as those for the preictal period. The spectrum
for channel 1 only has one power surge that lasts for less than
half a second before returning to its previous state. In con-
trast, the spectrum for channel 2 experiences a few small power
surges between 4 and 2 min prior to the end of the time series.
However, the power surges for the interictal periods occur at
high frequencies, while those for preictal periods occur at low
frequencies.

In summary, the spectra of the preictal period differ from
those of the interictal period in three ways. First, spectra of the
preictal period exhibit pronounced fluctuations in power at high
frequencies, while spectra of the interictal period do not. Sec-
ond, the spectra of the preictal period have large power surges
at low frequencies, while the spectra of the interictal period
have smaller power surges at high frequency. Third, the dura-
tion of the power surges during the preictal period is longer
than those during the interictal period. The large number and
short duration of locally stationary segments found in the in-
terictal period is consistent with the findings in Kaplan et al.
(2005).

6.2 ENSO

The National Oceanic and Atmospheric Administration
(NOAA) defines the ENSO as a disruption of the ocean–
atmosphere system in the Tropical Pacific having important con-
sequences for weather and climate around the globe. In recent
years, there has been much research and debate on changes in
the structure of ENSO. Many researchers have reported changes
in the frequency of ENSO (Trenberth and Hoar 1996, 1997; An
and Wang 2000) and the intensity of ENSO (Timmermann,
Jin, and Collins 2004). The NOAA states on its website (http://
www.ncdc.noaa.gov/oa/climate/globalwarming.html) that it is
also true that El Niños have been more frequent and intense in
recent decades.

However, recent work by Solow (2006), Nicholls (2008), and
Rosen, Wood, and Stoffer (2009) suggests that the frequency and
intensity of ENSO have not changed over the last century. In this
section, we analyze the structure of ENSO by modeling the time-
varying spectrum of three indicators of ENSO. The first indicator
is the SOI. The SOI is the monthly standardized anomaly of the
mean sea-level pressure difference between Tahiti and Darwin
and is available from the Australian Bureau of Meteorology
at http://www.bom.gov.au/climate/current/soihtm1.shtml. Reli-
able measurements of this index are available from 1876 to the
present, and so we use the entire dataset in this example. The
second indicator of ENSO is the Niño3.4 index, which is the sea
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Figure 13. Plots of the SOI index from 1876 to 2011, panel (a), the Niño3.4 index from 1950 to 2011, panel (b), and the DSLPA from 1951
to 2010, panel (c). The online version of this figure is in color.

surface temperature (SST) averaged across the region 5S–5N,
120W–170W. From 1880 to 1950, the SST used to construct
the Niño3.4 index was measured by buoys or passing ships but
from 1950 onward satellite measurements of the SST were used
instead. There are many different versions of the Niño3.4 in-
dex, however, the differences among versions are very small
after 1950. For this reason, we confine our analysis to this time
period and use the Hadley Center SST dataset HadSST1. The
third index is the mean sea-level pressure at Darwin anoma-
lies (DSLPA) from 1951 to 2010, available from the NOAA
at http://www.cpc.ncep.noaa.gov/data/indices/darwin. This in-
dicator was chosen solely because it is the indicator used by
Trenberth and Hoar (1996), and we note that the SOI and
Niño3.4 have been considered to be better indicators of ENSO
than the DSLPA for some time (Chen 1982). Plots of the three
indices appear in Figure 13.

We set the maximum number of segments to be four for
the three series and ran the sampling scheme 6000 iterations

with a burn-in of 2000 iterations. The posterior probability of
the number of segments appears in Table 3. The time-varying
spectra of all three indices appear in Figure 14. Our results
indicate that the spectra of the three indices are very similar and
that they do not vary over time. Therefore, it is very unlikely that
there has been a change in the frequency or intensity of ENSO.
The estimated posterior probabilities that the time series are
stationary, that is, P̂r(m = 1 | x) are 0.95, 0.93, and 0.99 for the
SOI, Niño3.4, and DSLPA indices, respectively. These results
confirm the findings of Rosen, Wood, and Stoffer (2009), Solow
(2006), and Nicholls (2008).

One explanation for the difference between these findings and
the earlier study of Trenberth and Hoar (1996) is that Trenberth
and Hoar (1996) tested explicitly if there had been a change in
frequency from 1981 onward. In our model, explicitly testing
for a change in frequency in the SOI or the Niño3.4 index
from a specific time, t∗, is equivalent to assuming a priori that
Pr(ξ12 = t∗ | m = 2, x) = 1. This is a very strong prior belief,

Figure 14. Time-varying log spectrum of the SOI index from 1876 to 2011, panel (a), the Niño3.4 index from 1950 to 2011, panel (b), and
the DSLPA from 1951 to 2010, panel (c).
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Table 3. Posterior probability of number of segments for the three
indices, the SOI, Niño3.4, and DSLPA

Number of segments SOI Niño3.4 DSLPA

1 0.95 0.93 0.99
2 0.05 0.07 0.01
3 0.00 0.00 0.00

in effect the uncertainty surrounding the number of segments
and the partition was ignored by Trenberth and Hoar (1996). In
contrast, our methodology makes no assumptions regarding the
number of segments or the partition. For a full discussion of why
our results differ from those of Trenberth and Hoar (1996), see
the discussion in Rosen, Wood, and Stoffer (2009). Given the
results in this article, in Rosen, Wood, and Stoffer (2009), Solow
(2006), and Nicholls (2008), we suggest the NOAA update their
Website to reflect recent research findings.

APPENDIX: DETAILS OF THE SAMPLING SCHEME

As described in the article, a partition of the time series into
m segments is denoted by ξm = (ξ0,m, . . . , ξm,m). Also, let τ 2

m =
(τ 2

1,m, . . . , τ 2
m,m)′ and βm = (β ′

1,m, . . . ,β ′
m,m)′, where βj,m is a vector

of unknown coefficients for the jth segment in a partition of m seg-
ments, for j = 1, . . . , m. To simplify the notation, we assume that
βj,m, j = 1, . . . , m, includes α0j,m as its first entry (see Equation (3)).
In what follows, current and proposed values are denoted by the super-
scripts c and p, respectively.

1. Between-Model Moves: Let θm = (ξ ′
m, τ 2′

m,β ′
m)′ and suppose the

chain is currently at (mc, θ c
mc ). We propose to move to (mp, θ

p

mp ) by
drawing (mp, θ

p

mp ) from a proposal density q(mp, θ
p

mp | mc, θ c
mc ) and

accepting this draw with probability

α = min

{
1,

p
(
mp, θ

p

mp |x) × q
(
mc, θ c

mc |mp, θ
p

mp

)
p

(
mc, θ c

mc |x) × q
(
mp, θ

p

mp |mc, θ c
mc

) }
,

where p(·) denotes a target density, which is the product of an approx-
imate likelihood times prior densities. The specific forms of the target
and proposal densities depend on the move type and are detailed below.
We first outline the proposal density q(mp, θ

p

mp |mc, θ c
mc ) as

q
(
mp, θ

p

mp |mc, θ c
mc

)
= q(mp|mc) × q

(
θ

p

mp |mp,mc, θ c
mc

)
= q(mp|mc) × q

(
ξ

p

mp , τ
2p

mp , β
p

mp |mp, mc, θ c
mc

)
= q(mp|mc) × q

(
ξ

p

mp |mp, mc, θ c
mc

)
× q

(
τ

2p

mp |ξp

mp , mp, mc, θ c
mc

)
× q

(
β

p

mp |τ 2p

mp , ξ
p

mp , mp, mc, θ c
mc

)
.

Thus, (mp, θ
p

mp ) is drawn by first drawing mp , followed by ξ
p

mp , τ
2p

mp ,
and finally β

p

mp . Details on how each of these quantities is sampled are
provided next.

(a) The number of segments, mp , is proposed from q(mp|mc). Let
M be the maximum number of segments allowed, and mc

2 min

be the current number of segments that contain at least 2 tmin

observations, then

q(mp = k|mc) =⎧⎪⎪⎨⎪⎪⎩
1/2, if k = mc − 1, mc + 1 and mc 	= 1,

M, mc
2 min 	= 0,

1, if k = mc − 1 and mc = M or mc
2 min = 0,

1, if k = mc + 1 and mc = 1.

(b) Conditional on mp , a new partition, ξp

mp , a new vector of smooth-
ing parameters, τ

2p

mp , and a new vector of coefficients, β
p

mp , are
then proposed as follows.

i. Birth
Suppose mp = mc + 1, then
A. A partition,

ξ
p

mp = (
ξ c

0,mc , . . . , ξ
c
k∗−1,mc , ξ

p

k∗,mp ,

ξ c
k∗,mc , . . . , ξ

c
mc,mc

)
,

is proposed from q(ξp

mp |mp, mc, θ c
mc ). This partition is

proposed by first selecting at random a segment j =
k∗ to split. A point t∗ within segment j = k∗ is then
selected to be the proposed partition point, subject to the
constraint that ξ c

k∗−1,mc + tmin ≤ t∗ ≤ ξ c
k∗,mc − tmin. The

proposal probability function is

q
(
ξ

p

j,mp = t∗|mp, mc, ξ c
mc

)
= p

(
j = k∗|mp, mc, ξ c

mc

)
× p

(
ξ

p

k∗,mp = t∗|j = k∗, mp,mc, ξ c
mc

)
,

= 1

mc
2 min

× 1

nk∗,mc − 2tmin + 1
.

B. A vector of smoothing parameters

τ
2p

mp =
(
τ 2c

1,mc , . . . , τ
2c
k∗−1,mc , τ

2p

k∗,mp , τ
2p

k∗+1,mp ,

τ 2c
k∗+1,mc , . . . , τ

2c
mc,mc

)
is proposed from q(τ 2p

mp |mp, ξ
p

mp , mc, θ c
mc ) =

q(τ 2p

mp | mp, τ 2c
mc ). We follow Green (1995) and

propose the additional smoothing parameters for the
newly split segment, τ

2p

k∗,mp and τ
2p

k∗+1,mp , by draw-

ing u ∼ U [0, 1] and letting τ
2p

k∗,mp and τ
2p

k∗+1,mp be
deterministic functions of u and τ 2c

k∗,mc . Specifically,

τ
2p

k∗,mp = τ 2c
k∗,mc × u

1 − u
,

τ
2p

k∗+1,mp = τ 2c
k∗,mc × 1 − u

u
.

C. A vector of coefficients

β
p

mp = (
βc′

1,mc , . . . , β
c′
k∗−1,mc , β

p′
k∗,mp ,

β
p′
k∗+1,mp , βc′

k∗+1,mc . . . , βc′
mc,mc

)′

is proposed from q(βp

mp | τ 2p

mp , ξ
p

mp , mp,mc,

θ c
mc ) = q(βp

mp | τ 2p

mp , ξ
p

mp , mp). The pair of vec-
tors β

p

k∗,mp and β
p

k∗+1,mp are drawn from nor-
mal approximations to their posterior condi-
tional distributions p(βp

k∗,mp | xp

k∗ , τ
2p

k∗,mp , mp) and

p(βp

k∗+1,mp | xp

k∗+1, τ
2p

k∗+1,mp , mp), where xp

k∗ and xp

k∗+1

denote the subsets of the time series belonging to
segment k∗ and k∗ + 1, respectively, see Equation
(3). Note that ξ

p

mp determines xp
∗ = (xp′

k∗ , xp′
k∗+1)′,

and so ξ
p

mp has been suppressed here. For exam-
ple, β

p

k∗,mp is drawn from N (βmax
k∗ , max

k∗ ), where
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βmax
k∗ = arg max

β
p

k∗,mp

p(βp

k∗,mp | xp

k∗ , τ
2p

k∗,mp , mp) and

max
k∗ =

{
−

(
∂2 log p

(
β

p

k∗,mp |xp

k∗ , τ
2p

k∗,mp , mp
))

/ (
∂β

p

k∗,mp ∂β
p′
k∗,mp

) |βp

k∗ ,mp =βmax
k∗

}−1

.

The acceptance probability for the birth move is α =
min{1, A}, where

A = p
(
θ

p

mp |x,mp
)
p

(
θ

p

mp |mp
)
p (mp)

p
(
θ c

mc |x, mc
)
p

(
θ c

mc |mc
)
p(mc)

×
{
p(mc|mp)p(βc

k∗,mc )
}

/{
p(mp|mc)p(ξmp

k∗,mp |mp, mc)

× p(u)p
(
β

p

k∗,mp

)
p

(
β

p

k∗+1,mp

)}
×

∣∣∣∣∣∣
∂

(
τ

2p

k∗,mp , τ
2p

k∗+1,mp

)
∂

(
τ 2c
k∗,mc , u

)
∣∣∣∣∣∣ ,

where p(u) = 1, 0 ≤ u ≤ 1, p(βp

k∗,mp ) and p(βp

k∗+1,mp )
are the Gaussian proposal densities N (βmax

k∗ , max
k∗ ) and

N (βmax
k∗+1, 

max
k∗+1), respectively, and the Jacobian is∣∣∣∣∣∂(τ 2p

k∗,mp , τ
2p

k∗+1,mp )

∂(τ 2c
k∗,mc , u)

∣∣∣∣∣ = 2τ 2c
k∗,mc

u(1 − u)

= 2(τp

k∗,mp + τ
p

k∗+1,mp )2.

ii. Death
If mp = mc − 1, then the reverse of a birth move is per-
formed.
A. A partition

ξ
p

mp = (
ξ c

0,mc , . . . , ξ
c
k∗−1,mc , ξ

c
k∗+1,mc , . . . , ξ

c
mc,mc

)
is proposed by selecting one of mc − 1 partition points
to remove. Let j = k∗ be the partition point selected for
removal. Among mc segments, there are mc − 1 partition
points available for removal. Our proposal is to make
each partition point equally likely, so that

q
(
ξ

p

j,mp |mp, mc, ξ c
mc

)
= 1

mc − 1
.

B. A vector of smoothing parameters

τ
2p

mp =
(
τ 2c

1,mc , . . . , τ
2c
k∗−1,mc , τ

2p

k∗,mp , τ 2c
k∗+2,mc , . . . , τ

2c
mc,mc

)
is proposed from q(τ 2p

mp | mp, ξ
p

mp , mc, θ c
mc ) =

q(τ 2p

mp | mp, τ 2c
mc ). A single smoothing parameter, τ

2p

k∗,mp ,
is formed from τ 2c

k∗,mc and τ 2c
k∗+1,mc by reversing the

process described in step (b) i B, that is,

τ
2p

k∗,mp =
√

τ 2c
k∗,mc τ

2c
k∗+1,mc .

C. A vector of coefficients

β
p

mp = (
βc′

1,mc , . . . , β
c′
k∗−1,mc , β

p′
k∗,mp ,

βc′
k∗+2,mc , . . . , β

c′
mc,mc

)′

is proposed from q(βp

mp | τ 2p

mp , ξ
p

mp ,mp, mc, θc
mc ) =

q(βp

mp | τ 2p

mp , ξ
p

mp , mp). A single vector of coefficients,
β

p

k∗,mp , is drawn from a normal approximation to its pos-

terior distribution, p(βp

k∗,mp | x, τ
2p

k∗,mp , ξ
p

mp ,mp), as in
step (b) i C.

The acceptance probability is the inverse of that of the birth
move. If the move is accepted, then mc = mp and θ c

mc = θ
p

mp .

2. Within-Model Moves: For this type of move, m is fixed, and so
the notation indicating the dependence on the number of segments is
dropped. Within-model moves consist of two parts: first, a partition
point relocation move is performed, and then, conditional on the relo-
cation, all the basis function coefficients are updated. The two steps,
jointly, are either accepted or rejected via an M–H step. The smoothing
parameters are then updated via a Gibbs step.

(a) Suppose the chain is at θ c = (ξ c, βc); we propose to move to
θp = (ξp, βp) as follows.
i. Select a partition point, ξk∗ , to relocate from m − 1 possi-

ble partition points. Then, select a position in the interval
[ξk∗−1, ξk∗+1], subject to the constraint that the new location
is at least tmin from each of ξk∗−1 and ξk∗+1, so that

Pr
(
ξ

p

k∗ = t
) = Pr(j = k∗) × Pr

(
ξ

p

k∗ = t |j = k∗) , (A.1)

where Pr(j = k∗) = (m − 1)−1.
To explore the parameter space efficiently, we construct a
mixture distribution for Pr(ξp

k∗ = t |j = k∗), so that

Pr
(
ξ

p

k∗ = t |j = k∗) = π q1

(
ξ

p

k∗ = t |ξ c
k∗

)
+ (

1 − π ) q2(ξp

k∗ = t |ξ c
k∗

)
, (A.2)

where q1(ξp

k∗ = t | ξ c
k∗ ) = (nk∗ + nk∗+1 − 2tmin + 1)−1, ξk∗−1

+ tmin ≤ t ≤ ξk∗+1 − tmin, and

q2

(
ξ

p

k∗ = t |ξ c
k∗

) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if |t − ξ c
k∗ | > 1,

1/3, if |t − ξ c
k∗ | ≤ 1, nk∗ 	= tmin

and nk∗+1 	= tmin,

1/2, if t − ξ c
k∗ ≤ 1, nk∗ = tmin

and nk∗+1 	= tmin,

1/2, if ξ c
k∗ − t ≤ 1, nk∗ 	= tmin

and nk∗+1 = tmin,

1, if t = ξ c
k∗ , nk∗ = tmin and nk∗+1 = tmin.

As can be seen, the support of q1 has nk∗ + nk∗+1 − 2tmin + 1
time points, while that of q2 has at most three. Using q2 alone
results in a relatively high acceptance rate of the M–H step
but explores the parameter space too slowly. Adding the q1

component allows bigger jumps which, in turn, leads to faster
exploration of the parameter space. Fixing π at a relatively
small value, say 0.2, combines a relatively high acceptance
rate with fast exploration of the parameter space.

ii. Draw β
p

j , j = k∗, k∗ + 1, from an approximation to∏k∗+1
j=k∗ p(βj | xp

j , τ 2
j ), as in Step 1 (b) (i) C.

The proposal density, evaluated at β
p

j , j = k∗, k∗ + 1, is

q
(
βp

∗ | xp
∗ , τ 2

∗
) =

k∗+1∏
j=k∗

q
(
β

p

j | xp

j , τ 2
j

)
,

where βp
∗ = (βp′

k∗ , β
p′
k∗+1)′ and τ 2

∗ = (τ 2
k∗ , τ 2

k∗+1)′. In a simi-
lar fashion, the proposal density is evaluated at the current
values of βc

∗ = (βc′
k∗ , βc′

k∗+1)′. The draw βp
∗ is accepted with

probability

α = min

{
1,

p
(
xp

∗ | βp
∗
)
p

(
βp

∗ |τ 2
∗
)
q

(
βc

∗ | xc
∗, τ

2
∗
)

p
(
xc∗ | βc∗

)
p

(
βc∗ | τ 2∗

)
q

(
β

p
∗ | xp

∗ , τ 2∗
)}

,

where xc
∗ = (xc′

k∗ , xc′
k∗+1)′. If the draw is accepted, then

(ξ c
k∗ , βc

∗) = (ξp

k∗ , βp
∗ ).
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(b) Draw τ 2p from

p(τ 2
∗|β∗) =

k∗+1∏
j=k∗

p(τ 2
j |βj )

and accept with probability 1. Equation (4) gives the density of
p(τ 2 | β) without the proportionality constant.

[Received June 2011. Revised July 2012.]
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