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Abstract. Resampling the innovations sequence of state space models has proved to be a useful tool in many

respects. For example, while under general conditions, the Gaussian MLEs of the parameters of a state space model

are asymptotically normal, several researchers have found that samples must be fairly large before asymptotic results

are applicable. Moreover, problems occur if the any of parameters are near the boundary of the parameter space. In

such situations, the bootstrap applied to the innovation sequence can provide an accurate assessment of the sampling

distributions of the parameter estimates. We have also found that a resampling procedure can provide insight into

the validity of the model. In addition, the bootstrap can be used to evaluate conditional forecast errors of state

space models. The key to this method is the derivation of a reverse-time innovations form of the state space model

for generating conditional data sets. We will provide some theoretical insight into our procedures that show why

resampling works in these situations, and we provide simulations and data examples that demonstrate our claims.

Key words. ARMAX models, Bootstrap, Finite sample distributions, Forecasting, Innovations filter, Kalman
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1 Introduction

A very general model that seems to subsume a whole class of special cases of interest is the state
space model or the dynamic linear model, which was introduced in Kalman (1960) and Kalman
and Bucy (1961). Although the model was originally developed as a method primarily for use
in aerospace-related research, it has been applied to modeling data from such diverse fields as
economics (e.g. Harrison and Stevens, 1976, Harvey and Pierse, 1984, Harvey and Todd, 1983,
Kitagawa and Gersch 1984, Shumway and Stoffer, 1982), medicine (e.g. Jones, 1984) and molecular
biology (e.g. Stultz, et al, 1993). An excellent modern treatment of time series analysis based on
the state space model is the text by Durbin and Koopman (2001). We note, in particular, that
ARMAX models can be written in state space form (see e.g. Shumway and Stoffer, 2000, §4.6), so
anything we say and do here regarding state space models applies equally to ARMAX models.

Here, we write the state space model as

xxxt+1 = Φxxxt + Υuuut + wwwt t = 0, 1, ..., n (1)

yyyt = Atxxxt + Γuuut + vvvt t = 1, ..., n (2)

where xxxt represents the p-dimensional state vector, and yyyt represents the q-dimensional observation
vector. In the state equation (1), the initial state xxx0 has mean µµµ0 and variance-covariance matrix
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Σ0; Φ is p× p, Υ is p× r, and uuut is an r× 1 vector of fixed inputs. In the observation equation (2),
At is q × p and Γ is q × r. Here, wwwt and vvvt are white noise series (both independent of xxx0), with
var(wwwt) = Q, var(vvvt) = R, but we also allow the state noise and observation noise to be correlated
at time t; that is, cov(wwwt, vvvt) = S, and zero otherwise. Note, S is a p × q matrix. Throughout, we
assume the model coefficients and the correlation structure of the model are uniquely parameterized
by a k × 1 parameter vector Θ; thus, Φ = Φ(Θ), Υ = Υ(Θ), Q = Q(Θ), At = At(Θ), Γ = Γ(Θ),
R = R(Θ), and S = S(Θ).

We denote the best linear predictor of xxxt+1 given the data {yyy1, . . . , yyyt} as xxxt
t+1, and denote the

covariance matrix of the prediction error, (xxxt+1 −xxxt
t+1), as P t

t+1. The Kalman filter (e.g. Anderson
and Moore, 1979) can be used to obtain the predictors and their covariance matrices successively
as new observations become available. The innovation sequence, {εεεt; t = 1, . . . , n}, is defined to
be the sequence of errors in the best linear prediction of yyyt given the data {yyy1, . . . , yyyt−1}. The
innovations are

εεεt = yyyt − Atxxx
t−1
t − Γuuut, t = 1, . . . , n, (3)

where the innovation variance-covariance matrix is given by

Σt = AtP
t−1
t A′

t + R, t = 1, . . . , n. (4)

The innovations form of the Kalman filter, for t = 1, . . . , n, is given by the following equations
with initial conditions xxx0

1 = Φµµµ0 + Υuuu0 and P 0
1 = ΦΣ0Φ′ + Q:

xxxt
t+1 = Φxxxt−1

t + Υuuut + Ktεεεt, (5)

P t
t+1 = ΦP t−1

t Φ′ + Q − KtΣtK
′
t, (6)

Kt = (ΦP t−1
t A′

t + S)Σ−1
t . (7)

In this article, we will work with the standardized innovations

eeet = Σ−1/2
t εεεt, (8)

so we are guaranteed these innovations have, at least, the same first two moments. In (8), Σ1/2
t

denotes the unique square root matrix of Σt defined by Σ1/2
t Σ1/2

t = Σt. We now define the (p+q)×1
vector

ξξξt =
[
xxxt

t+1

yyyt

]
.

Combining (3) and (5) results in a vector first-order equation for ξξξt given by

ξξξt = Ftξξξt−1 + Guuut + Hteeet, (9)

where

Ft =
[

Φ 0
At 0

]
, G =

[
Υ
Γ

]
, Ht =

[
KtΣ

1/2
t

Σ1/2
t

]
.

Estimation of the model parameters Θ is accomplished by Gaussian quasi-maximum likelihood.
The innovations form of the Gaussian likelihood (ignoring a constant) is

− lnLY (Θ) =
1
2

n∑
t=1

(
ln |Σt(Θ)| + εεεt(Θ)′Σt(Θ)−1εεεt(Θ)

)

=
1
2

n∑
t=1

(
ln |Σt(Θ)| + eeet(Θ)′eeet(Θ)

)
, (10)
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where LY (Θ) denotes the likelihood of Θ given the data yyy1, . . . , yyyn assuming normality; note that
we have emphasized the dependence of the innovations on the parameters Θ. We stress the fact that
it is not necessary for the data to be Gaussian to consider (10) as the criterion function to be used
for parameter estimation. Furthermore, under certain rare conditions, the Gaussian quasi-MLE
of Θ when the process is non-Gaussian is asymptotically optimal; details can be found in Caines
(1988, Chapter 8).

2 Assessing the Finite Sample Distribution of Parameter

Estimates

Although, under general conditions (which we assume to hold in this section), the MLEs of the
parameters of the model, Θ, are consistent and asymptotically normal, time series data are often
of short or moderate length. Several researchers have found evidence that samples must be fairly
large before asymptotic results are applicable (Dent and Min, 1978; Ansley and Newbold, 1980).
Moreover, it is well known that problems occur if the parameters are near the boundary of the
parameter space. In this section, we discuss an algorithm for bootstrapping state space models to
assess the finite sample distribution of the model parameters. This algorithm and its justification,
including the non-Gaussian case, along with examples and simulations, can be found in Stoffer and
Wall (1991).

Let Θ̂ denote the Gaussian quasi-MLE of Θ, that is, Θ̂ = argmaxΘLY (Θ), where LY (Θ) is given
in (10); of course, if the process is Gaussian, Θ̂ is the MLE. Let εεεt(Θ̂) and Σt(Θ̂) be the innovation
values obtained by running the filter under Θ̂. Once this has been done, the bootstrap procedure
is accomplished by the following steps.

1. Construct the standardized innovations

eeet(Θ̂) = Σ−1/2
t (Θ̂)εεεt(Θ̂).

2. Sample, with replacement, n times from the set {eee1(Θ̂), ..., eeen(Θ̂)} to obtain {eee∗1, ..., eee∗n}, a
bootstrap sample of standardized innovations.

3. To construct a bootstrap data set {yyy∗1, ..., yyy∗n}, solve (9) using eee∗t in place of eeet; that is, solve

ξξξ∗t = Ft(Θ̂)ξξξ∗t−1 + G(Θ̂)uuut + Ht(Θ̂)eee∗t , (11)

for t = 1, . . . , n. The exogenous variables uuut and the initial conditions of the Kalman filter
remain fixed at their given values, and the parameter vector is held fixed at Θ̂. Note that a
bootstrapped observation yyy∗t is obtained from the final q rows of the (p + q) × 1 vector ξξξ∗t .
Because of startup irregularities, it is sometimes a good idea to set yyy∗t ≡ yyyt for the first few
values of t, say t = 1, 2, . . . , t0, where t0 is small, and to sample from {eeet0+1(Θ̂), ..., eeen(Θ̂)}.
That is, do not bootstrap the first few data points; typically setting t0 to 4 or 5 will suffice.

4. Using the bootstrap data set {yyy∗t ; t = 1, ..., n}, construct a likelihood, LY ∗(Θ), and obtain
the MLE of Θ, say, Θ̂∗.
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5. Repeat steps 2 through 4, a large number, B, of times, obtaining a bootstrapped set of
parameter estimates {Θ̂∗

b ; b = 1, ..., B}. The finite sample distribution of (Θ̂ − Θ) may be
approximated by the distribution of (Θ̂∗

b − Θ̂), for b = 1, ..., B.

2.1 Stochastic Regression

An interesting application of the state-space model was given in Newbold and Bos (1985, pp. 61-73).
Of the several alternative models they investigate, we focus on the one specified by their equations
(4.7a) and (4.7b). Their model has one output variable, the nominal interest rate recorded for
three-month treasury bills, yt. The output equation is specified by

yt = α + βtzt + vt,

where zt is the quarterly inflation rate in the Consumer Price Index, α is a fixed constant, βt is a
stochastic regression coefficient, and vt is white noise with variance σ2

v . The stochastic regression
term, which comprises the state variable, is specified by a first-order autoregression,

(βt+1 − b) = φ(βt − b) + wt,

where b is a constant, and wt is white noise with variance σ2
w. The noise processes, vt and wt, are

assumed to be uncorrelated.
Using the notation of the state space model (1) and (2), we have in the state equation, xxxt = βt,

Φ = φ, uuut ≡ 1, Υ = (1 − φ)b, Q = σ2
w, and in the observation equation, At = zt, Γ = α, R = σ2

v ,
and S = 0. The parameter vector is Θ = (φ, α, b, σw , σv)′.

We consider the first estimation exercise reported in Table 4.3 of Newbold and Bos. This ex-
ercise covers the period from the first quarter of 1953 through the second quarter of 1965, n = 50
observations. We repeat their analysis so our results can be compared to their results. In addition,
we focus on this analysis because it demonstrates that the bootstrap applied to the innovation
sequence can provide an accurate assessment of the sampling distributions of the parameter esti-
mates when analyzing short time series. Moreover, this analysis demonstrates that a resampling
procedure can provide insight into the validity of the model.

The results of the Newton–Raphson estimation procedure are listed in Table 1. The MLEs
obtained in Newbold and Bos are in agreement with our values, and differ only in the fourth decimal
place; the differences are attributed to the fact that we use a different numerical optimization
routine. Included in Table 1 are the asymptotic standard errors reported in Newbold and Bos.
Also shown in the Table 1 are the corresponding standard errors obtained from B = 500 runs of
the bootstrap. These standard errors are simply the square root of

∑B
b=1(Θ̂

∗
ib− Θ̂i)2/(B−1), where

Θi, represents the ith parameter, i = 1, ..., 5, and Θ̂i is the MLE of Θi.
The asymptotic standard errors listed in Table 1 are typically smaller than those obtained from

the bootstrap. This result is the most pronounced in the estimates of φ, σw, and σv, where the
bootstrapped standard errors are about 50% larger than the corresponding asymptotic value. Also,
asymptotic theory prescribes the use of normal theory when dealing with the parameter estimates.
The bootstrap, however, allows us to investigate the small sample distribution of the estimators
and, hence, provides more insight into the data analysis.

For example, Figure 1 shows the bootstrap distribution of the estimator of φ. This distribution
is highly skewed with values concentrated around 0.8, but with a long tail to the left. Some quantiles
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Table 1: Comparison of Asymptotic Standard Errors (SE) and
Bootstrapped Standard Errors (B = 500).

Asymptotic Newbold & Bos Bootstrap
Parameter MLE SE SE SE

φ 0.841 0.200 0.212 0.304
α −0.771 0.645 0.603 0.645
b 0.858 0.278 0.259 0.277

σw 0.127 0.092 na 0.182
σv 1.131 0.142 na 0.217

Figure 1: Bootstrap distribution, B = 500, of the estimator of φ.

of the bootstrapped distribution of φ are −0.09 (2.5%), 0.03 (5%), 0.16 (10%), 0.87 (90%), 0.92
(95%), 0.94 (97.5%), and they can be used to obtain confidence intervals. For example, a 90%
confidence interval for φ would be approximated by (0.03, 0.92). This interval is rather wide, and
we will interpret this after we discuss the results of the estimation of σw.

Figure 2 shows the bootstrap distribution of the estimator of σw. The distribution is concen-
trated at two locations, one at approximately σ̂∗

w = 0.15 and the other at σ̂∗
w = 0. The cases in

which σ̂∗
w ≈ 0 correspond to deterministic state dynamics. When σw = 0 and |φ| < 1, then βt ≈ b

for large t, so the approximately 25% of the cases in which σ̂∗
w ≈ 0 suggest a fixed state, or con-

stant coefficient model. The cases in which σ̂∗
w is away from zero would suggest a truly stochastic

regression parameter. To investigate this matter further, Figure 3 shows the joint bootstrapped es-
timates, (φ̂∗, σ̂∗

w), for non-negative values of φ̂∗. The joint distribution suggests σ̂∗
w > 0 corresponds

to φ̂∗ ≈ 0. When φ = 0, the state dynamics are given by βt = b + wt. If, in addition, σw is small
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Figure 2: Bootstrap distribution, B = 500, of the estimator of σw.
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Figure 3: Joint bootstrap distribution, B = 500, of the estimators of φ and σw. Only the values
corresponding to φ̂∗ ≥ 0 are shown.

relative to b (as it appears to be in this case), the system is nearly deterministic; that is, βt ≈ b.
Considering these results, the bootstrap analysis leads us to conclude the dynamics of the data are
best described in terms of a fixed, rather than stochastic, regression effect.
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If, however, we use the same model for the entire data set presented in Newbold and Bos
(that is, 110 quarters of three-month treasury bills and inflation rate, covering 1953:I to 1980:II),
stochastic regression appears to be appropriate. In this case the estimates using Newton-Raphson
with estimated standard errors (“asymptotic” | “bootstrap”) are:

φ̂ = 0.896 (0.067 | 0.274), α̂ = −0.970 (0.475 | 0.538), b̂ = 1.090 (0.158 | 0.221),

σ̂w = 0.117 (0.037 | 0.122), σ̂v = 1.191 (0.108 | 0.171).

We note that the asymptotic standard error estimates are still too small, and the bootstrapped
distribution of φ̂ is still markedly skewed. In particular, a 90% bootstrap confidence interval for φ

is (.46, .92).

2.2 Stochastic Volatility

This problem is somewhat different than the previous section in that it is not a straight-forward
application of the algorithm. In this example, we consider the stochastic volatility model due to
Harvey, Ruiz and Shephard (1994). Let rt denote the return or growth rate of a process of interest.
For example, if st is the value of a stock at time t, the return or relative gain of the stock is
rt = ln(st/st−1). Typically, it is var(rt) = σ2

t that is of interest. In the stochastic volatility model,
we model ht = ln σ2

t as an AR(1), that is,

ht+1 = φ0 + φ1ht + wt, (12)

where wt is white Gaussian noise with variance σ2
w; this comprises the state equation. The obser-

vations are taken to be yt = ln r2
t , and yt is related to the state via

yt = α + ht + vt. (13)

Together, (12) and (13) make up the stochastic volatility model, where ht represents the unob-
served volatility of the process yt. If vt was Gaussian white noise, (12)–(13) would form a Gaussian
state space model, and we could then use standard results to fit the model to data. Unfortunately,
yt = ln r2

t is rarely normal, so one typically assumes that vt = ln z2
t where zt is standard Gaussian

white noise. In this case, ln z2
t is distributed as the log of a chi-squared random variable with one

degree of freedom. Kim, Shephard and Chib (1998) proposed modeling the log of a chi-squared
random variable by a mixture of normals.

Various approaches to the fitting of stochastic volatility models have been examined; these
methods include a wide range of assumptions on the observational noise process. A good summary
of the proposed techniques, both Bayesian (via MCMC) and non-Bayesian approaches (such as
quasi-maximum likelihood estimation and the EM algorithm), can be found in Jacquier et al (1994),
and Shephard (1996). Simulation methods for classical inference applied to stochastic volatility
models are discussed in Danielson (1994) and Sandmann and Koopman (1998).

In an effort to keep matters simple, our method (see Shumway and Stoffer, 2000, §4.10) of fitting
stochastic volatility models is to retain the Gaussian state equation (12), but in the observation
equation (13), we consider vt to be white noise, and distributed as a mixture of two normals, one
centered at zero. In particular, we write

vt = (1 − ηt)zt0 + ηtzt1, (14)
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where ηt is an iid Bernoulli process, Pr{ηt = 0} = π0, Pr{ηt = 1} = π1, with π0 + π1 = 1, and
where zt0 ∼ iid N(0, σ2

0), and zt1 ∼ iid N(µ1, σ
2
1).

The advantage of this model is that it is fairly easy to fit because it uses normality. The model
specified by equations (12)–(14), and the corresponding filter, are similar to those presented in
Peña and Guttman (1988), who used the idea to obtain a robust Kalman filter, and, as previously
mentioned, Kim, Shephard and Chib (1998). In addition, this technique is similar to technique
discussed in Shumway and Stoffer (2000, §4.8). In particular, the filtering equations for this model
are:

ht
t+1 = φ0 + φ1h

t−1
t +

1∑
j=0

πtjKtjεtj , (15)

P t
t+1 = φ2

1P
t−1
t + σ2

w −
1∑

j=0

πtjK
2
tjΣtj , (16)

εt0 = yt − α − ht−1
t , (17)

εt1 = yt − α − ht−1
t − µ1, (18)

Σt0 = P t−1
t + σ2

0 , (19)

Σt1 = P t−1
t + σ2

1 , (20)

Kt0 = φ1P
t−1
t / Σt0, (21)

Kt1 = φ1P
t−1
t / Σt1. (22)

To complete the filtering, we must be able to assess the probabilities πt1 = Pr(ηt = 1 | y1, . . . , yt),
for t = 1, . . . , n; of course, πt0 = 1− πt1. Let fj(t | t− 1) denote the conditional density of yt given
the past y1, ..., yt−1, and ηt = j (j = 0, 1). Then,

πt1 =
π1f1(t | t − 1)

π0f0(t | t − 1) + π1f1(t | t − 1)
, (23)

where we assume the distribution πj, for j = 0, 1 has been specified a priori. If the investigator
has no reason to prefer one state over another the choice of uniform priors, π1 = 1/2, will suffice.
Unfortunately, it is computationally difficult to obtain the exact values of fj(t | t− 1); although we
can give an explicit expression of fj(t | t − 1), the actual computation of the conditional density is
prohibitive. A viable approximation, however, is to choose fj(t | t − 1) to be the normal density,
N(ht−1

t + µj, Σtj), for j = 0, 1 and µ0 = 0; see Shumway and Stoffer (2000, §4.8) for details.
The innovations filter given in (15)–(23) can be derived from the Kalman filter by a simple

conditioning argument. For example, to derive (15), we write

E (ht+1 | y1, . . . , yt) =
1∑

j=0

E (ht+1 | y1, . . . , yt, ηt = j) Pr(ηt = j | y1, . . . , yt)

=
1∑

j=0

(
φ0 + φ1h

t−1
t + Ktjεtj

)
πtj

= φ0 + φ1h
t−1
t +

1∑
j=0

πtjKtjεtj .

7



Estimation of the parameters, Θ = (φ0, φ1, σ
2
0 , µ1, σ

2
1 , σ

2
w)′, is accomplished via MLE based on

the likelihood given by

ln LY (Θ) =
n∑

t=1

ln

⎛
⎝ 1∑

j=0

πj fj(t | t − 1)

⎞
⎠ , (24)

where the densities for fj(t | t−1) are approximated by the normal densities previously mentioned.
To perform the bootstrap, we develop a vector first-order equation, as was done in (9). First,

using (17)–(18), and noting that yt = πt0yt + πt1yt, we may write

yt = α + ht−1
t + πt0εt0 + πt1(εt1 + µ1). (25)

Consider the standardized innovations

etj = Σ−1/2
tj εtj , j = 0, 1, (26)

and define the 2 × 1 vector

eeet =
[
et0

et1

]
.

Also, define the 2 × 1 vector

ξξξt =
[
ht

t+1

yt

]
.

Combining (15) and (25) results in a vector first-order equation for ξξξt given by

ξξξt = Fξξξt−1 + Gt + Hteeet, (27)

where

F =
[
φ1 0
1 0

]
, Gt =

[
φ0

α + πt1µ1

]
, Ht =

[
πt0Kt0Σ

1/2
t0 πt1Kt1Σ

1/2
t1

πt0Σ
1/2
t0 πt1Σ

1/2
t1

]
.

Hence, the steps in bootstrapping for this case are the same as steps 1 through 5 previously
described, but with (11) replaced by the following first-order equation:

ξξξ∗t = F (Θ̂)ξξξ∗t−1 + Gt(Θ̂; π̂t1) + Ht(Θ̂; π̂t1)eee∗t , (28)

where Θ̂ = (φ̂0, φ̂1, σ̂
2
0 , α̂, µ̂1, σ̂

2
1 , σ̂

2
w)′ is the MLE of Θ, and π̂t1 is estimated via (23), replacing

f1(t | t − 1) and f0(t | t − 1) by their respective estimated normal densities (π̂t0 = 1 − π̂t1).
To examine the efficacy of the bootstrap for the stochastic volatility model, we generated n = 200

observations from the following stochastic volatility model:

ht = .95ht−1 + wt, (29)

where wt is white Gaussian noise with variance σ2
w = 1. The observations were then generated as

yt = ht + vt, (30)

where the observational white noise process, vt, is distributed as the log of a chi-squared random
variable with one degree of freedom. The density of vt is given by

fv(x) =
1√
2π

exp
{
−1

2
(ex − x)

}
−∞ < x < ∞, (31)
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Figure 4: Simulated data, n = 200, from the stochastic volatility model (29)–(30).

and its mean and variance are −1.27 and π2/2, respectively; the density (31) is highly skewed
with a long tail on the left. The data are shown in Figure 4. Then, we assumed the true error
distribution was unknown to us, and we fit the model (12)–(14) using the Gauss BFGS variable
metric algorithm to maximize the likelihood. The results for the state parameters are given in Table
2 in the columns marked MLE and Asymptotic SE. Next, we bootstrapped the data, B = 500 times,
using the incorrect model (12)–(14) to assess the finite sample standard errors (SE). The results are
listed in Table 2 in the column marked Bootstrap SE. Finally, using the correct model, (29)–(30), we
simulated 500 processes, estimated the parameters based on the model (12)–(14) also via a BFGS
variable metric algorithm, and assessed the SEs of the estimates of the actual state parameters.
These values are listed in Table 2 in the column labeled “True” SE.

Table 2: Stochastic Volatility Simulation Results.
State Actual Asymptotic Bootstrap “True”

Parameter Value MLE SE SE† SE‡
φ 0.95 0.963 0.032 0.032 0.036
σw 1 1.042 0.279 0.215 0.252

† Based on 500 bootstrapped samples. ‡ Based on 500 replications.

In Table 2 we notice that the bootstap SE and the asymptotic SE of φ are about the same; also,
both estimates are slightly smaller than the “true” value. The interest here, however, is not so much
in the SEs, but in the actual sampling distribution of the estimates. To explore the finite sample
distribution of the estimate of φ, Figure 5 shows the centered bootstrap histogram: (φ̂∗

b − φ̂), for
b = 1, . . . , 500 bootstrapped replications [the bars are filled with lines of positive slope], the centered
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“true” histogram: (φ̂j − φ), where φ̂j is the MLE obtained on the j-th iteration, for j = 1, . . . , 500
Monte Carlo replications [the bars are filled with flat lines], and the centered asymptotic normal
distribution of (φ̂ − φ) [appropriately scaled for comparison with the histograms], superimposed
on eachother. Clearly, the bootstrap distribution is closer to the “true” distribution than the
estimated asymptotic normal distribution; the bootstrap distribution captures the positive kurtosis
(peakedness) and asymmetry of the “true” distribution.

Figure 5: Sampling distributions of the estimate of φ; simulated data example: The centered
bootstrap histogram (lines with positive slope), the centered “true” histogram (flat lines), and the
centered asymptotic normal distribution.

In an example using actual data, we consider the analysis of quarterly U.S. GNP from 1947(1)
to 2002(3), n = 223. The data are seasonally adjusted and were obtained from the Federal Reserve
Bank of St. Louis (http://research.stlouisfed.org/fred/data/gdp/gnpc96). The growth rate
is plotted in Figure 6 and appears to be a stable process. Analysis of the data indicates the growth
rate is an MA(2) [for more details of this part of the analysis, see Shumway and Stoffer, 2000, §2.8],
however, the residuals of that fit, which appear to be white, suggest that there is volatility.

Figure 7 shows the log of the squared residuals, say yt, from the MA(2) fit on the U.S. GNP
series. The stochastic volatility model (12)–(14) was then fit to yt. Table 3 shows the MLEs of the
model parameters along with their asymptotic SEs assuming the model is correct. Also displayed in
Table 3 are the means and SEs of B = 500 bootstrapped samples. As in the simulation, there is some
amount of agreement between the asymptotic values and the bootstrapped values. Based on the
previous simulation, we would be more prone to focus on the actual sampling distributions, rather
than assume normality. For example, Figure 8 compares the bootstrap histogram and asymptotic
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Figure 6: U.S. GNP quarterly growth rate.

Figure 7: Log of the squared residuals from an MA(2) fit on GNP growth rate.

normal distribution of φ̂1. In this case, as in the simulation, the bootstrap distribution exhibits
positive kurtosis and skewness which is missed by the assumption of asymptotic normality. Based
on the simulation, we would be prone to believe the results of the bootstrap are fairly accurate.
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Figure 8: Bootstrap histogram and asymptotic distribution of φ̂1 for the US GNP example.

Table 3: Estimates and Their Asymptotic and Bootstrap
Standard Errors for US GNP Example.

Asymptotic Bootstrap Bootstrap
Parameter MLE SE Mean† SE†

φ0 0.068 0.274 −0.010 0.353
φ1 0.900 0.099 0.864 0.102
σw 0.378 0.208 0.696 0.375
α −10.524 2.321 −10.792 0.748
µ1 −2.164 0.567 −1.941 0.416
σ1 3.007 0.377 2.891 0.422
σ0 0.935 0.198 0.692 0.362

† Based on 500 bootstrapped samples.

3 Assessing the Finite Sample Distribution of Conditional

Forecasts

In this section we focus on assessing the conditional forecast accuracy of time series models using a
state space approach and resampling methods. Our work is motivated by the following considera-
tions. First, the state space model provides a convenient unifying representation for various models,
including ARMA(p, q) models. Second, the actual practice of forecasting involves the prediction
of a future point based on an observed sample path, thus conditional forecast error assessment
is of most interest. Third, real-life applications involving time series data are often characterized
by short data sets and lack of distributional information. Asymptotic theory provides little help
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here and often there are no compelling reasons to assume Gaussian distributions apply. Finally,
the utility and applicability already demonstrated by the bootstrap for prediction of AR processes
suggests that it has much to offer in the prediction of other processes.

Early application of the bootstrap to assess conditional forecast errors can be found in Find-
ley (1986), Stine (1987), Thombs and Schuchany (1990), Kabaila (1993) and McCullough (1994,
1996). Interest in the evaluation of confidence intervals for conditional forecast errors has led to
methodological problems because a backward, or reverse-time, set of residuals must be generated.
Findley (1986) first discussed this problem and Breidt, Davis and Dunsmuir (1992, 1995) offered
a solution that is implemented in the work of McCullough (1994, 1996). To date there is a well
grounded methodology for AR models and this work has established the utility of the bootstrap.

A similar state of affairs appears not to exist for other time series models. We suspect this is
due to the difficulty with which one can identify mechanisms required to generate bootstrap data
sets, whether forwards or backwards in time. For AR models this is easily accomplished because
the required initial, or terminal (in the case of conditional forecasts), conditions are given in terms
of the observed series. With other time series models this may not be the case because the models
require solutions of difference equations involving unobserved disturbances.

The state space model and its related innovations filter offer a way around this difficulty. It is
worthwhile, therefore, to investigate how well this can be done in practice. In §2, such a combination
was of use in assessing parameter estimation error, and this naturally leads to the same question
being asked in relation to conditional prediction errors. We find that the bootstrap is as useful
in evaluating conditional forecast errors as it has proven to be in assessing parameter estimation
errors, particularly in a non-Gaussian environment. Our presentation is based on the work of Wall
and Stoffer (2002).

3.1 Generating Reverse Time Datasets

As seen in §2, the generation of bootstrap data sets in forward time is easy. Given an initial
condition or prior, (11) is solved recursively for t = 1, . . . , n to produce realizations passing through
the given initial condition. Such computations are all that is required in obtaining bootstrap
estimates of parameter estimation error statistics or unconditional forecast error statistics. The
generation of bootstrap data sets for assessing conditional forecast errors is not so straight forward
because they must be generated backward and this requires a backward-time state space model.

An early discussion of the problems related to backward time models in assessing conditional
forecast errors is found in Findley (1986). Further consideration of the problem is found in Breidt,
Davis and Dunsmuir (1992, 1995). This literature stresses the need to properly construct a set of
“backward” residuals and Breidt, Davis and Dunsmuir (1992, 1995) provide an algorithm for this
that solves the problem for AR(p) models. A similar result is needed for state space models, but
development of backward-time representations has not received much attention in the literature.
Notable exceptions are the elegant presentation found in Caines (1988, Ch 4) and a derivation in
Aoki (1989, Ch 5). Our work requires an extension of their results to the time-varying case.

The key system in generating bootstrap data sets is the innovations filter form, (9); recall

ξξξt = Ftξξξt−1 + Guuut + Hteeet, (9)
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where
ξξξt =

[
xxxt

t+1

yyyt

]
, Ft =

[
Φ 0
At 0

]
, G =

[
Υ
Γ

]
, Ht =

[
KtΣ

1/2
t

Σ1/2
t

]
.

We require a backward-time representation of this system. All the problems highlighted by Findley
(1986) and Breidt, Davis and Dunsmuir (1992, 1995) appear here. For example, the first p rows of
(9) cannot be solved backwards in time by simply expressing xxxt−1

t in terms of xxxt
t+1. First, Φ is not

always invertible; e.g., MA(q) models. Second, even when Φ is invertible, Φ−1 has characteristic
roots outside the unit circle whenever Φ has its characteristic roots inside the unit circle. This
situation is intolerable in generating reverse time trajectories because of the explosive nature of the
solutions for ξξξt. In addition, we now have a time-varying system.

These difficulties are overcome by building on the method found in Caines (1988, pp. 236-237).
Special attention must be given to the way in which the time-varying matrices propagate through
the derivations and proper account must be taken of the effects of the known, or observed input
sequence uuut. For ease, we will assume here that uuut ≡ 000; the general case is presented in Wall and
Stoffer (2002). Application of the symmetry of minimal splitting subspaces yields the following
reverse-time state space representation for t = n − 1, n − 2, . . . , 1:

rrrt = Φ′rrrt+1 + Btxxx
t−1
t − Cteeet

yyyt = Ntrrrt+1 − Ltxxx
t−1
t + Mteeet

where

Bt = V −1
t − Φ′V −1

t+1Φ

Ct = Φ′V −1
t+1KtΣ

−1/2
t ,

Dt = I − Σ−1/2
t K ′

tV
−1
t+1KtΣ

−1/2
t ,

Lt = Σ−1/2
t C ′

t − AtVtBt,

Mt = Σ−1/2
t Dt − AtVtCt,

Nt = AtVtΦ′ + Σ−1
t K ′

t,

and
Vt+1 = ΦVtΦ′ + KtΣ−1

t K ′
t.

The reverse-time state vector is rrrt. The backward recursion is initialized by rrrn = V −1
n xxxn−1

n . Details
of the derivation are given in Wall and Stoffer (2002).

The above recursion specifies a three step procedure for the generation of backward time data
sets (written here for uuut ≡ 0):

1. Generate Vt, Bt, Ct,Dt, Lt,Mt and Nt forwards in time, t = 1, . . . , n, with initial condition

V1 = P 0
1 (32)

2. For given {eee∗t ; 1 ≤ t ≤ n − 1}, set xxx∗
1 = 0 and generate {xxx∗

t ; 1 ≤ t ≤ n} forwards in time,
t = 1, . . . , n, via

xxx∗
t+1 = Φxxx∗

t + KtΣ
1/2
t eee∗t (33)
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Figure 9: Reverse time realizations of the ARMA(2, 1) process given in (36).

3. Set rrr∗n = rrrn = V −1
n xxxn−1

n and generate {yyy∗t ; 1 ≤ t ≤ n} backwards in time, t = n−1, n−2 . . . , 1,
via the reverse time state space model

rrr∗t = Φ′rrr∗t+1 + Btxxx
∗
t − Cteee

∗
t (34)

yyy∗t = Ntrrrt+1 − Ltxxx
∗
t + Mteee

∗
t (35)

This procedure assumes one already has drawn randomly, with replacement, from the model esti-
mated standardized residuals to obtain a set of n − 1 residuals denoted {eee∗t ; 1 ≤ t ≤ n − 1}. The
last residual is kept set at eee∗n = eeen in order to ensure the conditioning requirement is met on ξξξ∗n;
that is, ξξξ∗n = ξξξn. This requirement follows from the autoregressive structure of (9); for details, see
§4.2. The creation of an arbitrary number of bootstrap data sets is accomplished by repeating the
above for each set of bootstrap residuals {eee∗t ; 1 ≤ t ≤ n − 1; eee∗n = eeen}.

As an example, consider the univariate ARMA(p, q) process given by

yt + a1yt−1 + · · · + apyt−p = vt + b1vt−1 + · · · + bqvt−q

where vt is an i.i.d. process with variance σ2
v . This process can be represented in state space form,

(1)–(2), in various ways. For example, let m = max {p, q}, let xxxt be an m-dimensional state vector,
and write the state space coefficient matrices as

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0 0 −am

1 · · · 0 0 0 −am−1
...

. . .
...

...
...

...
0 · · · 1 0 0 −a3

0 · · · 0 1 0 −a2

0 · · · 0 0 1 −a1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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A =
[

0 · · · 0 0 0 1
]
,

Υ = 0 and Γ = 0. The state noise process is defined by the wwwt = ggg vt where

ggg =
[

bm − am, bm−1 − am−1, · · · b3 − a3, b2 − a2, b1 − a1

]′
.

If m > p then a� = 0 for 	 > p, and if m > q then b� = 0 for 	 > q. The variance-covariance matrices
are given by

Q = σ2
v ggg ggg′, R = σ2

v , S = σ2
v ggg.

Figure 9 presents a sample of 100 reverse-time trajectories for the Gaussian ARMA(2, 1) model

yt = 1.4yt−1 − 0.85yt−2 + vt + 0.6vt−1, (36)

with σv = 0.2 and n = 49. The original, observed sample is plotted with the bold line.

3.2 Computing Forecast Errors via the Bootstrap

At this point we assume we have n observations, yyy1, . . . , yyyn, and we wish to forecast m time points
into the future. In addition, we have the MLEs of the model parameters Θ, say Θ̂, based on the
data. The associated standardized innovation values are denoted by {eeet(Θ̂); 1 ≤ t ≤ n}; note, to
avoid any possible confusion, we emphasize the dependence of the values on the parameters. For
b = 1, 2, . . . , B (where B is the number of bootstrap replications) we execute the following six steps:

1. Construct a sequence of n + m standardized residuals

{eeeb
t(Θ̂); 1 ≤ t ≤ n + m}

via n + m− 1 random draws, with replacement, from the standardized residuals {eeet(Θ̂); 1 ≤
t ≤ n}. This sequence is formed as follows: (i) use n−1 vectors to form {eeeb

t(Θ̂); 1 ≤ t ≤ n−1};
(ii) fix eeeb

n(Θ̂) = eeen(Θ̂); and (iii) use the remaining m vectors to form {eeeb
t(Θ̂); n + 1 ≤ t ≤

n + m}.

2. Generate data
{yyyb

t(Θ̂); 1 ≤ t ≤ n − 1}
via the backward state space model (34) and (35) with Θ = Θ̂ using the residuals {eeeb

t(Θ̂); 1 ≤
t ≤ n − 1}. Set yyyb

n(Θ̂) = yyyn.

3. Generate data
{yyyb

t(Θ̂); n + 1 ≤ t ≤ m + n}
via the forward state space model (9) with Θ = Θ̂ and with xxxt−1;b

t = xxxt−1
t (Θ̂) and using the

residuals eeeb
t(Θ̂), for n + 1 ≤ t ≤ n + m.

4. Compute model parameter estimates Θb via MLE using the data {yyyb
t(Θ̂); 1 ≤ t ≤ n}.
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5. Compute the bootstrap conditional forecasts

{yyyb
t(Θ

b); n + 1 ≤ t ≤ m + n}

via the forward time state space model (9) with Θ = Θb, and with xxxt−1;b
t = xxxt−1

t (Θb) and
eeeb

t = 0 for n + 1 ≤ t ≤ n + m.

6. Compute the bootstrap conditional forecast errors via:

δδδb
� = yyyb

n+�(Θ̂) − yyyb
n+�(Θ

b); 1 ≤ 	 ≤ m.

The extent to which the bootstrap captures the behavior of the actual forecast errors derives
from the extent to which these errors mimic the stochastic process δδδ� = yyyn+�(Θ) − yyyn+�(Θ̂); 1 ≤
	 ≤ m.

As an example, consider the univariate ARMA(1, 1) process given by

yt = 0.7yt−1 + vt + 0.10vt−1 (37)

where vt = 0.2zt and zt is a mixture of 90% N(µ = −1/9, σ = .15) and 10% N(µ = 1, σ = .15). To
demonstrate the benefits of resampling, we will assume that we do not know the true distribution
of vt and will act as if it was normal. The model is first-order with

Φ = [0.70] A = [1] and ggg = [0.80] ,

in the notation of previous example.
In this simulation we use B = 2, 000 and m = 4. The approximate “true” distribution is then

given by the relative frequency histogram of the observed conditional forecast errors. The results
of the simulation is summarized by two sets of four histograms. One set (Figure 10) presents the
approximate “true” relative frequency histograms for each forecast lead time, while the other set
(Figure 11) presents the relative frequency histograms obtained from application of the bootstrap.
Superimposed on each is the Gaussian density that follows from application of the asymptotic
Gaussian theory. The simulation uses a short data set with n = 49 to emphasize the efficacy of
the bootstrap when the use asymptotics is questionable and where bias is a factor in the forecasts.
Prediction intervals follow immediately from the data summarized in the histograms. Although
we choose to present only the histograms, the percentile, the bias-corrected (BC), and the accel-
erated bias-corrected (BCa) method all are applicable for generating confidence intervals using the
generated data (see Efron, 1987).

Figures 10 and 11 reveal the value of the bootstrap. Indication of the mixture distribution is
striking in both the “true” and the bootstrap; the bimodality and asymmetry are clearly evident.

3.3 Stochastic Regression

We now illustrate the use of the bootstrap in assessing forecast errors in the data set analyzed in
§2.1. Recall, the treasury bill interest rate is modeled as being linearly related to quarterly inflation
as

yt = α + βtzt + vt,
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Figure 10: “True” forecast histograms for the ARMA(1, 1) process given in (37).

Figure 11: Bootstrap forecast histograms for the ARMA(1, 1) process given in (37).

where α is a fixed constant, βt is a stochastic regression coefficient, and vt is white noise with
variance σ2

v . The stochastic regression term, which comprises the state variable, is specified by a
first-order autoregression,

(βt − b) = φ(βt−1 − b) + wt,
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Figure 12: Dymanic behavior of the quantiles of yb
n+�(Θ̂) [upper left panel], the quantiles of

yb
n+�(Θ

b) [upper right panel], and the quantiles of the bootstrap conditional forecast errors yb
n+�(Θ̂)−

yb
n+�(Θ

b), for 	 = 1, 2, 3, 4 [lower left panel]. The yt series [lower right panel] as a bold line and
the envelope of the backward data series as fine lines above and below the observed sample in the
stochastic regression example.

where b is a constant, and wt is white noise with variance σ2
w. The noise processes, vt and wt, are

assumed to be uncorrelated.
The model parameter vector contains five elements, Θ = (φ, α, b, σw , σv)′ and is estimated via

Gaussian quasi-maximum likelihood using data from the first quarter of 1967 through the second
quarter of 1979 (49 observations). The MLEs and their estimated standard errors (in parentheses)
were:

φ̂ = 0.898 (0.101) α̂ = −0.615 (1.457) b̂ = 1.195 (0.278)

σ̂w = 0.092 (0.049) σ̂v = 1.287 (0.197)

Among the many forecast error assessment questions that can be asked concerning this model
are ones concerning the properties of the conditional forecast error distribution assuming that we

know the future values of the inflation rate. In particular, is a Gaussian assumption warranted
when assume we know the actual future values of zt? Such questions may arise within the context
of a “rational expectations” framework wherein economic agents are assumed so well informed that
they “know” the inflation rate. The bootstrap, coupled with our methodology here, can shed some
light on just such a question as this.

Figure 12 depicts the bootstrap results with B = 2000. The upper left panel presents the
dynamic behavior of the quantiles (specifically, 2.5%, 5%, 16%, 50%, 84%, 95%, 97.5%) of yb

n+�(Θ̂)
and the upper right panel presents the quantiles of yb

n+�(Θ
b). Given the significant variability in

the upper right panel, it is clear that the variability due to the additive disturbances (upper left

19



Figure 13: Histograms of four conditional forecast errors, B = 2000, in the stochastic regression
example.

Figure 14: Histograms of four conditional forecast errors, B = 10, 000, in the stochastic regression
example.

panel) is not the dominant factor in the forecast uncertainty that it is so often assumed to be. The
lower left panel the depicts dynamic behavior of the quantiles of the bootstrap conditional forecast
errors yb

n+�(Θ̂)− yb
n+�(Θ

b), for 	 = 1, 2, 3, 4. The lower right panel plots the yt series as a bold line
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and the envelope of the backward data series as fine lines above and below the observed sample.
We find the backward generated series to be highly representative of the stochastic properties of
the observed series.

Figure 13 presents histograms of the conditional forecast errors, yb
n+�(Θ̂) − yb

n+�(Θ
b), for 	 =

1, 2, 3, 4, when B = 2000 and Figure 14 presents the histograms when B = 10, 000. Each pic-
ture gives indication of the problems in assuming that the asymptotic theory applies. Negative
bias is indicated and t-tests reject zero means for 	 = 2, 3, 4, in both bootstrap experiments. A
Kolmogorov-Smirnov test rejects the asymptotic Gaussian distribution (which are also displayed in
the figures) for all forecast lead times for both values of B. It appears little is gained in extending
the bootstrap replications beyond B = 2000, other than the more “smooth” appearance of the
histograms.

4 Discussion

The state space model provides a convenient unifying representation for various time domain mod-
els. This article demonstrates the utility of resampling the innovations of time domain models via
state space models and the Kalman (innovations) filter. We have based our presentation primarily
on the material in two articles, Stoffer and Wall (1991) and Wall and Stoffer (2002).

In Stoffer and Wall (1991) we developed a resampling scheme to assess the finite sample distri-
bution of parameter estimates for general time domain models. This algorithm uses the elegance
of the state space model in innovations form to construct a simple resampling scheme. The key
point is that while under general conditions, the MLEs of the model parameters are consistent and
asymptotically normal, time series data are often of short or moderate length so that the use of
asymptotics may lead to wrong conclusions. Moreover, it is well known that problems occur if the
parameters are near the boundary of the parameter space. We have provided additional examples
here that emphasize the usefulness of the algorithm. We have also explained, heuristically, why the
resampling scheme is asymptotically correct under appropriate conditions.

We have also discussed conditional forecast accuracy of time domain models using a state space
approach and resampling methods that was first presented in Wall and Stoffer (2002). Applications
involving time series data are often characterized by short data sets and lack of distributional
information; asymptotic theory provides little help here and frequently there are no compelling
reasons to assume Gaussian distributions apply. Interest in the evaluation of confidence intervals
for conditional forecast errors in AR models led to methodological problems because a backward,
or reverse-time, set of residuals must be generated. This problem was eventually solved and there is
now a well grounded methodology for AR models. Researchers were confined to AR models because
the required initial, or terminal (in the case of conditional forecasts), conditions are given in terms
of the observed series. With other time series models this may not be the case because the models
require solutions of difference equations involving unobserved disturbances. The state space model
and its related innovations filter offered a way around this difficulty. We have exhibited a reverse-
time state space in innovations form. We have presented additional examples here that demonstrate
resampling as useful in evaluating conditional forecast errors as it has proven to be in assessing
parameter estimation errors, particularly in a non-Gaussian environment. In the Appendix, we
explain, heuristically, why resampling works in large samples.
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Appendix: Large Sample Heuristics

In §2, resampling techniques were used to determine the finite sample distributions of the parameter esti-
mates when the use of asymptotics was questionable. In §3, we used resampling to assess the finite sample
distributions of the forecast errors. The extent to which resampling the innovations does what it is supposed
to do can be measured in various ways. In the finite sample case, we can perform simulations—where the
true distributions are known—and compare the bootstrap results to the known results. If the bootstrap
works well in simulations, we may feel confident that the bootstrap will work well in similar situations,
but, of course, we have no guarantee that it works in general. In this way, the examples in §2 and §3 help
demonstrate the validity of the resampling procedures discussed in those sections.

Another approach is to ask if the bootstrap will give the correct asymptotic answer. That is, if we have
an infinite amount of data and can resample an infinite amount of times, do we get the correct asymptotic
distribution (typically, we require asymptotic normality). If the answer is no, we can assume that resampling
will not work with small samples. If the answer is yes, we can only hope that resampling will work with
small samples, but again, we have no guarantee. For state space models, how well the resampling techniques
perform in finite samples hinges on at least three things. First, the techniques are conditional on the data,
so the success of the resampling depends on how typical the data set is for the particular model. Second, we
assume the model is correct (at least approximately); if the proposed model is far from the truth, the results
of the resampling will also be incorrect. Finally, assuming the data set is typical and the model is correct,
the success of the resampling depends on how close the empirical distribution of the innovations is to the
actual distribution of the innovations. We are guaranteed such closeness in large samples if the innovations
are stable and mixing in the sense of Gastwirth and Rubin (1975).

Section 2 Heuristics

Stoffer and Wall (1991) established the asymptotic justification of the procedure presented in §2 under
general conditions (including the case where the process is non-Gaussian). To keep matters simple, we
assume here that the state space model, (1)–(2) with At ≡ A, is Gaussian, observable and controllable, and
the eigenvalues of Φ are within the unit circle. We denote the true parameters by Θ0, and we assume the
dimension of Θ0 is the dimension of the parameter space. Let Θ̂n be the consistent estimator of Θ0 obtained
by maximizing the Gaussian innovations likelihood, LY (Θ), given in (10). Then, under general conditions
(n → ∞), √

n
(
Θ̂n − Θ0

)
∼ AN

[
0, In(Θ0)−1

]
,

where In(Θ) is the information matrix given by

In(Θ) = n−1E
[−∂2 ln LY (Θ)

/
∂Θ ∂Θ′] .

Precise details and the proof of this result are given in Caines (1988, Chapter 7) and in Hannan and Deistler
(1988, Chapter 4).

Let Θ̂∗
n denote the parameter estimates obtained from the resampling procedure of §2. Let Bn be the

number of bootstrap replications and, for ease, we take Bn = n. Then, Stoffer and Wall (1991) established
that, under certain regularity conditions (n → ∞),

√
n

(
Θ̂∗

n − Θ̂n

)
∼ AN

[
0, I∗

n(Θ̂n)−1
]
,

where I∗
n(Θ) is the information matrix given by

I∗
n(Θ) = n−1E∗

[−∂2 ln LY (Θ)
/

∂Θ ∂Θ′] ,

and E∗ denotes expectation with respect to the empirical distribution of the innovations. It was then shown
that

In(Θ0) − I∗
n(Θ̂n) → 0 (38)

22



almost surely, as n → ∞; hence, the resampling procedure is asymptotically correct.
It is informative to examine, at least partially, why (38) holds. Let Zta ≡ Zta(Θ) = ∂(eee′t eeet)/∂θa

where eeet ≡ eeet(Θ) is the standardized innovation, (8), and θa is the a-th component of Θ. Similarly, let
Z∗

ta ≡ Z∗
ta(Θ) = ∂(eee∗

′
t eee∗t )/∂θa, where eee∗t ≡ eee∗t (Θ) is the resampled standardized innovation. The (a, b)-th

element of In(Θ0) is

n−1
n∑

t=1

{E(ZtaZtb) − E(Zta)E(Ztb)}
∣∣

Θ=Θ0
(39)

whereas the (a, b)-th element of I∗
n(Θ̂n) is

n−1
n∑

t=1

{E∗(Z∗
taZ∗

tb) − E∗(Z∗
ta)E∗(Z∗

tb)}
∣∣

Θ=Θ̂n
. (40)

The terms in (40) are

E∗(Z∗
ta) = n−1

n∑
j=1

Zja and E∗(Z∗
taZ∗

tb) = n−1
n∑

j=1

ZjaZjb. (41)

Hence, (39) contains population moments, whereas (40) contains the corresponding sample moments. It
should be clear that under appropriate conditions, (39) and (40) are asymptotically (n → ∞) equivalent.
Details of these results can be found in Stoffer and Wall (1991, Appendix).

Section 3 Heuristics

As in the previous part, to keep matters simple, we assume the state space model (1)–(2), with At ≡ A, is
observable and controllable, and the eigenvalues of Φ are within the unit circle; these assumptions ensure
the asymptotic stability of the filter. We assume that we have N observations, {yyyn−N+1, . . . , yyyn} available,
and that N is large. We let Θ̂N denote the (assumed consistent as N → ∞) Gaussian MLE of Θ, and let
Θ̂∗

N denote a bootstrap parameter estimate.
For one-step-ahead forecasting the model specifies that the process ξξξt, which we assume is in steady-state

at time n + 1, is given by
ξξξn+1 = F (Θ)ξξξn + G(Θ)uuun + H(Θ)eeen+1 (42)

where

ξξξt =
[
xxxxxxxxxt

t+1

yyyt

]
, (43)

and

F =
[

Φ 0
A 0

]
, G =

[
Υ
Γ

]
, H =

[
KΣ1/2

Σ1/2

]
;

K and Σ represent the steady-state gain and innovation variance-covariance matrices, respectively. Recall
that {uuut} is a fixed and known input process.

For convenience, we have dropped the parameter from the notation when representing a filtered value
that depends on Θ. For example, in (42) we wrote ξξξt ≡ ξξξt(Θ) and eeet ≡ eeet(Θ). The process eeet is the
standardized, steady-state innovation sequence so that E{eeet} = 000 and E{eeeteee

′
t} = Iq.

The one-step-ahead conditional forecast estimate is given by

ξ̃̃ξ̃ξn+1 = F (Θ̂N)ξ̂̂ξ̂ξn + G(Θ̂N )uuun, (44)

where, in keeping consistent with the notation, we have written ξ̂̂ξ̂ξn ≡ ξξξn(Θ̂N ). The conditional forecast
estimate is labeled with a tilde. Watanabe (1985) showed that, under the assumed conditions and notation,
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xxxn
n+1(Θ̂N ) = xxxn

n+1(Θ) + ooop(1) (N → ∞), and consequently, we write ξ̂̂ξ̂ξn = ξξξn + ooop(1), noting that the final
q elements of ξ̂̂ξ̂ξn and ξξξn are identical. Hence, the conditional prediction error can be written as

∆N ≡ ξξξn+1 − ξ̃̃ξ̃ξn+1

= [F (Θ) − F (Θ̂N)]ξ̂̂ξ̂ξn + +F (Θ)ooop(1) + [G(Θ) − G(Θ̂N )]uuun + H(Θ)eeen+1 (45)

From (45) we see the two sources of variation, namely the variation due to estimating the parameter Θ by
Θ̂N , and the variation due to the predicting the innovation value eeen+1 by zero.

In the conditional bootstrap procedure, we mimic (42) and obtain a pseudo observation

ξξξ∗n+1 = F (Θ̂N )ξ̂̂ξ̂ξn + G(Θ̂N )uuun + H(Θ̂N )eee∗n+1, (46)

where we hold ξ̂̂ξ̂ξn fixed throughout the resampling procedure. Note that because the filter is in steady-state,
the data, {yyyn−N+1, . . . , yyyn}, completely determine Θ̂N and consequently ξ̂̂ξ̂ξn. For finite sample lengths, the
data and the initial conditions determine Θ̂N . As a practical matter, if precise initial conditions are unknown,
one can drop the first few data points from the estimation of Θ so that changing the initial state conditions
does not change Θ̂N nor ξ̂̂ξ̂ξn. We remark that while the data completely determine ξ̂̂ξ̂ξn, the reverse is not true;
that is, fixing ξ̂̂ξ̂ξn in no way fixes the entire data sequence {yyyn−N+1, . . . , yyyn}. For example, in the AR(1) case,
fixing ξ̂̂ξ̂ξn is equivalent to fixing yyyn only. In addition, eee∗n+1 is a random draw from the empirical distribution
of the standardized, steady-state innovations. Under the mixing conditions of Gastwirth and Rubin (1975),
the empirical distribution of the standardized, steady-state innovations converges weakly (N → ∞) to the
standardized, steady-state innovation distribution.

To mimic the forecast in (44), the bootstrap estimated conditional forecast is given by

ξ̃̃ξ̃ξ
∗
n+1 = F (Θ̂∗

N)ξ̂̂ξ̂ξn + G(Θ̂∗
N )uuun, (47)

which yields the bootstrapped conditional forecast error

∆∗
N ≡ ξξξ∗n+1 − ξ̃̃ξ̃ξ

∗
n+1

= [F (Θ̂N ) − F (Θ̂∗
N )]ξ̂̂ξ̂ξn + [G(Θ̂N ) − G(Θ̂∗

N )]uuun + H(Θ̂N )eee∗n+1. (48)

Comparison of (45) and (48) shows why, in finite samples, the bootstrap works; that is, (48) is a sample-based
imitation of (45). Letting N → ∞ in (45), while holding ξ̂̂ξ̂ξn fixed, we have that, if Θ̂N →p Θ, then ∆N ⇒
H(Θ)eee where eee is a random vector that is distributed according to the steady-state standardized innovation
distribution (⇒ denotes weak convergence). In addition, if conditional on the data, Θ̂∗

N − Θ̂N →p 000, then
∆∗

N ⇒ H(Θ)eee as N → ∞. Extending these results to m-step-ahead forecasts follows easily by induction.
Stoffer and Wall (1991) established conditions under which Θ̂∗

N − Θ̂N →p 000 as N → ∞ when the forward
bootstrapped samples are used. It remains to determine the conditions under which this result holds when
the backward bootstrap data are used.
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