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Abstract. An approach to the analyses of discrete-valued time series is discussed. The 
analyses are accomplished in the spectral domain using the Walsh-Fourier transform 
which is based on Walsh functions. This approach will enable an investigator of discrete 
systems to analyse the data in terms of square waveforms and sequency rather than sine 
waves and frequency. 

We develop a general signal-plus-noise type model for discrete-valued time series in 
which Walsh-Fourier spectral analysis is of interest. We consider the problems of detect- 
ing whether a common signal exists in repeated measures on discrete-valued time series 
and in discrete-valued processes collected in an experimental design. We show that these 
models may depend on  unknown regression parameters and we develop consistent esti- 
mates of these parameters based on the finite Walsh-Fourier transform. Applications to 
certain Markov models are given; however, the methods presented also apply to non- 
Markov cases. 

Keywords. Discrete-valued time series; Walsh-Fourier spectrum; Walsh-Fourier 
transform; discrete signal-plus-noise models; regression and analysis of power; Markov 
chains. 

1. INTRODUCTION 

Implicit in the Fourier (trigonometric) analysis of time series is one of two 
extreme assumptions about the process: (i) the very long stretch of the time series 
is the only time series we want to consider and consists of the superposition of 
not too many sinusoidal terms of substantially different frequencies; and (ii) the 
time series is to be regarded as a realization of an ergodic Gaussian process; it is 
one of many possible time series and the analyses are directed toward the proper- 
ties of the ensemble of the series, not toward those of a specific realization (cf. 
Brillinger and Tukey, 1982). 

There are, however, many physical situations in which time series are either 
positive or discrete and are patently non-normal, so that the analyses cannot be 
handled by transforming the data and applying Gaussian techniques (see, for 
example, Lewis, 1980, p. 154). Similarly there are processes, such as those which 
take values in a discrete finite set, which can neither be thought of as Gaussian, 
nor as the superpositions of well-separated sinusoids. Models for discrete-valued 
time series which have an ARMA structure are considered in Jacobs and Lewis 
(1978a, b, 1983) and in Lewis (1980). For the case of continuous-valued non- 
normal time series, it is perhaps still reasonable, in appropriate cases, to do spec- 
tral analysis via trigonometric methods. However, in the cases in which time 
series take values in a discrete (and possibly finite) set, it makes little statistical 
sense to correlate the data with sines and cosines. As an alternative, we suggest 
that the spectral analysis of discrete-valued time series be accomplished in the 
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450 D. S .  STOFFER 

Hw(3) = 

1 1 1 1 1 1 1 1  
1 1 1 1 - 1  -1 -1 -1 
1 1 - 1  -1 -1 -1 1 1 
1 1 -1 -1 1 1 -1 -1 
1 -1 -1 1 1 -1 -1 1 
1 -1 -1 1 -1 1 1 -1 
1 - 1  1 -1 -1 1 -1 1 
1 -1 1 -1 1 -1 1 -1 

FIGURE 1. Sequency-ordered discrete Walsh functions W(n, m/N), n, rn = 0, 1, . . . , 7, for a sample of 
size N = 23 as the rows of a Hadamard matrix. 

‘sequency’ domain via the Walsh-Fourier transform (cf. Ahmed and Rao, 1975; 
Kohn, 1980a; Morettin, 1981). This seems to be a natural alternative to the usual 
Fourier analysis, since the Walsh-Fpurier transform is based on the ‘square- 
wave’ Walsh functions. This approach would enable investigators to analyse 
discrete-valued time series (which we may think of as square waveforms) in terms 
of square waves and sequency (switches per unit time) rather than sine waves and 
frequency. As empirically demonstrated in Beauchamp (1975, chapter 5 ) :  

These examples indicate clearly the respective roles of Walsh and Fourier spectral analysis for 
discontinuous and smooth-varying signals respectively. Where the signal is derived from a 
sinusoidally-based waveform . . . then Fourier analysis is relevant. Where the signal contains 
sharp discontinuities and a limited number of levels . . . then Walsh analysis is appropriate. 

The Walsh functions, which are defined via the Rademacher functions (cf. 
Ahmed and Rao, 1975; Kohn, 1980a, or Morettin, 1981), form a complete ortho- 
normal sequence on [0, 1) and take on only two values, + 1 and - 1 (or ‘on’ and 
‘off). They are ordered by the number of zero-crossings (or switches) which is 
called sequency. Let W(n,  A), n = 0, 1, 2, .. ., 0 < A < 1, denote the nth sequency- 
ordered Walsh function, then W(n, .) makes n zero-crossings in [0, 1). The first 
eight discrete, sequency-ordered Walsh functions W(n, m/N) ,  m, n = 0, 1, . . . , 7, 
corresponding to a sample of length N = 23 are shown in Figure 1 in an 8 x 8 
symmetric matrix called the Walsh-ordered Hadamard matrix, Hw(3) (see 
Appendix A for details). We note that other orderings exist, for example, Paley 
order and Hadamard order are often used (cf. Ahmed and Rao, 1975); however, 
sequency or Walsh ordering is more natural in that it is comparable to the fre- 
quency ordering of sines and cosines. We shall discuss methods of generating the 
discrete Walsh functions in Appendix A. 

Walsh spectral analysis has been used for several purposes, primarily in the 
engineering sciences, such as speech processing, word recognition, image coding 
and transmission, filtering and multiplexing. It has also been used to describe 
biological and medical systems such as monitoring EEG and ECG signals (see, 
for example, the Proceedings on the Applications of Walsh Functions; Ahmed and 
Rao, 1975; Beauchamp, 1975; Harmuth, 1972; to mention a few). Applications of 
Walsh functions in the statistics literature are rather scarce and we mention two. 
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WALSH-FOURIER ANALYSIS OF DISCRETE-VALUED TIME SERIES 45 1 

Ott and Kronmal (1976) use the Walsh transform in classification and prediction 
problems for strictly stationary binary time series. Stoffer and Panchalingam 
(1987) analyse simulated and real binary time series in the sequency domain. 

At present, there are two modes of development of Walsh spectral analysis in 
the literature. The first mode is termed Walsh spectral analysis and is developed 
via the concept of dyadic stationarity. That is, it is based on processes ( X ( n ) ;  
n = 0, 1, 2, . . .> for which cov(X(n), X ( n  @ m)) = B(m) is a function only of the 
dyadic distance between n and n @ m, where n @ m denotes the dyadic addition 
of n and m (cf. Morettin, 1974b, 1981, for definitions, discussions and references). 
In this mode, one has in mind that the process of interest is the superposition of 
not too many Walsh functions of substantially different sequencies, that is, 

where Z(1), . . . , Z ( K )  are uncorrelated random variables with mean zero and 
variance at, k = 1, .. ., K ,  with ,Il, . . ., AK constants, Ai  # l j ,  i # j .  The other 
mode of development is termed Walsh-Fourier spectral analysis and is based on 
real-time stationarity. Theoretical results concerning the statistical application of 
Walsh-Fourier spectral analysis are relatively recent and to the best of our 
knowledge, are limited to the works of Kohn (1980a, b), Morettin (1974a, 1981, 
1983) and Stoffer (1985a). 

One is warned in the examination of non-mathematical literature concerning 
this subject to keep in mind that the two different modes exist, although the 
particular mode is not always apparent. This matter can be quite confusing since 
the results are considerably different and results from one mode do not typically 
apply to the other. An excellent review of the two different approaches is given in 
Morettin (1981). We believe that although dyadic time has some theoretical 
appeal in the Walsh spectral domain, owing to its strange behaviour (see, for 
example, the discussions in Robinson, 1972; Beauchamp, 1975), it is of little prac- 
tical use. We therefore concentrate on real-time stationary processes. 

A brief account of the existing Walsh-Fourier theory, as well as some new 
results and necessary tools to be used in the sequel, are given in the next section. 
In Section 3 we present a general signal-plus-noise type model for discrete-valued 
time series in which Walsh-Fourier spectral analysis is of interest. Next we con- 
sider the problem of detecting whether a common signal exists in repeated mea- 
surements on discrete-valued time series, and mention that this method extends 
to discrete-valued time series collected in an experimental design. We then con- 
sider the analysis of discrete signal-plus-noise models in a regression setting in 
which the signal is observable but the process depends on regression parameters. 
Our main goal is to estimate, via Walsh-Fourier spectral methods, the regression 
parameters and the noise spectrum. In all cases we give concrete examples by 
showing that certain Markov chains satisfy our models; however, the methods 
presented here also apply in non-Markov cases. For completeness, we provide a 
discussion in Appendix A on simple and economical methods for generating the 
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452 D. S. STOFFER 

discrete sequency-ordered Walsh functions and hence the finite Walsh-Fourier 
transform. 

2. PRELIMINARIES 

In this section we give definitions, establish some new results, and give a brief 
summary of the existing Walsh-Fourier theory for stationary time series which 
we use in the sequel. In particular, we concentrate on those properties which we 
can directly apply to discrete-valued time series. Hence, for example, we do not 
consider properties of processes which are generalized linear processes; such pro- 
cesses can be handled by the theory given in Kohn (1980a, b), Morettin (1983) 
and Stoffer (1985a). At present, our discussion will be for univariate time series; 
the multivariate versions follow in an obvious way and we mention them briefly 
at the end of this section. 

Let X(O), X(1), . . . , X(N - 1) by a sample of length N = 2p, p > 0 integer, from 
a weakly stationary time series {X(n),  n = 0, f 1, k 2, . . .} with absolutely sum- 
mable autocovariance function y(h) = cov(X(n), X(n + h)), h = 0, & 1, * 2, . . . . 
We assume for now that the constant mean value of X(n) is zero. Let W(n, A) be 
the nth Walsh function in sequency order, and let 

N - 1  

d&) = N-1'2 1 X(n)W(n, A), 0 < A < 1 (2.1) 

be the finite (or discrete) Walsh-Fourier transform of the data. The logical 
covariance of X(n) (cf. Robinson, 1972; Kohn, 1980a) is defined to be 

n = O  

N -  1 

T(j) = N-'  c y ( j @ k  - k )  
k = O  

where by j @ k we mean the dyadic addition of j and k. It can then be shown (cf. 
Kohn, 1980a) that the variance of dN(A) is given by 

N-1 
var{d&)} = 1 zG)WG, A). 

j = O  

Taking the limit (N + co) in (2.2) we have that var{d&)} -.f(A), where 
m 

f(4 = 1 .c(j)W(j, A), 0 G A < I 
j = O  

is called the Walsh-Fourier spectral density of X(n).  We note thatf(A) exists since 
the absolute summability of y(h) implies the absolute summability of TG). Specifi- 
cally, Kohn (1980a, lemma 3) shows that if 

lim c (1 - l~l/2n)lY(.Al < 00 (2.4) 
n-tm l j l < 2 n  

then 
If X(O), X(1), . . . , X(N - 1) is a sample of length N = 2 P ,  the finite transform 

(2.1) is calculated for AN = m/N,  m = 0, 1, . . . , N - 1. Since the discrete Walsh 

I TG) I < co andf(A) is well-defined. 
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WALSH-FOURIER ANALYSIS OF DISCRETE-VALUED TIME SERIES 453 

functions are symmetric in their arguments for N = 2j', that is, 

W(n, m/N) = W(m, n/N) (m, n = 0, 1, ..., N - 1) (2.5) 

the value of AN in the finite Walsh-Fourier transform corresponds to sequency. 
As with the usual Fourier analysis, if the mean of the series is unknown, the only 
sequency of the form 1, = m/N for which the transform cannot be evaluated is at 
the zero (m = 0) sequency. To see this, let Q = EX(n) ,  all n, and note that for 
m = 0 , 1 ,  ..., N - 1 ,  

N -  1 

N - '  W(n, m/N) = 6; 
n = O  

where 6 is the Kronecker delta (see Kohn, 1980a, lemma 1). It is clear from (2.6) 
that the mean-centred transform will be the uncentred transform except at m = 0, 
and in particular 

N - 1  

E(d,(m/N)} = N -  112 QW(n, m/N) = N'12Q6$ m = 0, 1, . . . , N - 1. 
n = O  

Kohn (1980a, corollary 3) gives the following useful results on the convergence 
of the second moment of the finite Walsh-Fourier transform under condition 
(2.4). Let AN be dyadically rational (that is, its binary representation is finite). If 
; IN  0 A .+ 0 as N = 2j' --* co, then 

Ew.,)) -f(4 (2.7) 

In general, the asymptotic covariance of the Walsh-Fourier transform at two 
distinct sequencies is not zero (cf. Kohn, 1980a, theorem 3). However, if A1, and 
A2*  @ A + 0, i = 1, 2 
as N = 2p --t 00, then 

are dyadically rational and 1 A l ,  - &, I 2 N-' with ;Ii, 

E { d N ( j L 1 .  N )  ' N ( & ,  N ) >  O. 

Various authors have established central limit theorems for the finite Walsh- 
Fourier transform under a wide range of conditions (cf. Kohn, 1980a; Morettin, 
1983; Stoffer, 1985a). We state three versions which are applicable to discrete- 
valued time series. The first version (Assumption 2.1) follows its trigonometric 
counterpart given in Hannan (1973) and can be found in Kohn (1980a, theorem 
4). The second version (Assumption 2.2) follows its trigonometric counterpart 
based on the existence of higher moments given in Brillinger (1975) and can be 
found in Morettin (1983, theorem 1). We remark that the above two versions 
exist side-by-side and that neither is included in the other (cf. Morettin, 1983). 
The third version (Assumption 2.3), although not vital to the developments which 
follow, is included to enrich the application possibilities. This version establishes 
a central limit theorem for discrete-valued second-order stationary processes 
which satisfy a type of finite dependence property. A proof is provided in 
Appendix B. 
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454 D. S. STOFFER 

ASSUMPTION 2.1. X(n)  is strictly stationary with zero mean. Let F,, be the o-jield 
generated by { X u ) ,  j < n} ; put 

uj  = [E{E(X(n)19,- j )  - E(X(n) lF , , - j - l ) }  2 1 112 , j 2 0 
F-m is trivial and ui < co. 

ASSUMPTION 2.2. X(n)  is strictly stationary with zero mean and jinite moments. 
Let Crul, . . ., j,) = cum{Xu,), . . . , Xu,)} be the rth cumulant of X(n), j , ,  . . ., j ,  = 0, 
fl, +2,...; 

m 

ASSUMPTION 2.3. X(n)  is second-order stationary with zero mean and covariance 
function y ( k ) ;  sup,, E(1 X(n)  12+6} < co for some 6 > 0. Let 9,, be the o-field gener- 
ated by  {Xu), j < n}. There exists a positive integer K such that 

(i) E{X(n)  I 9,,-,} = 0 as.; and 
(ii) E{X(n)X(n + k) I F,,-,} = y(k)  as .  for k = 0, 1, . . . , K - 1. 

If condition (2.4) and either Assumption 2.1, 2.2 or 2.3 hold, then d&) con- 
verges in distribution to a normal variate with mean zero and variance!@) given 
by (2.3). We note, for example, that discrete-valued time series which are based on 
mixtures, such as the discrete MA processes described in Jacobs and Lewis 
(1978a, b, 1983), Lewis (1980), and the geometric processes discussed in Langberg 
and Stoffer (1987), satisfy the dependence properties of Assumption 2.3. 

In order to be able to consistently estimate the Walsh-Fourier spectrum, we 
need asymptotic results for smoothing the Walsh-Fourier periodogram, ZN(AN) = 
di(AN).  We now state the following results in a theorem for use in the sequel. The 
theorem combines the three previous central limit theorems with a theorem given 
in Kohn (1980a, theorem 4). 

THEOREM 2.1. Let condition (2.4) and either Assumption 2.1, 2.2 or 2.3 hold. Let 
A j ,  N = j / N ,  I < j < N - 1, and suppose for {Aj( , ) ,  N ,  . . . , I j (M) ,  N}, Ij(,,,), 0 I + 0 as 
N -P 00, m = I ,  . . ., M and I A j ( l ) , N  - j l j ( k ) , N I  2 N-'  for 1 # k, I ,  k = 1, . . ., M .  
Then dN 3 N(0, A), where dN = (d&j(l) ,  N ) ,  . . . , d&j(M), N ) ) )  and h is an M x M 
diagonal matrix with f (A)  along the diagonal. Also 

dN dN 'f (2.8) 
so that M - IdN dN is an estimate off ( I )  having variance 2f ' ( I ) /M.  

If we let M -+ co as N -+ co with M / N  -+ 0 in Theorem 2.1, the smoothed 
periodogram M-'dNdN is a mean square consistent estimate of the Walsh- 
Fourier spectrum f (A), 0 < A < 1. 

Results obtained for the univariate finite Walsh-Fourier transform carry over, 
in an obvious way, to the vector case, say X(n) = (X,(n), . . . , X,(n))', except that 
(cf. Kohn, 1980b, section 3): 
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WALSH-FOURIER ANALYSIS OF DISCRETE-VALUED TIME SERIES 455 

(i) The logical covariance will now be r x r matrices given by 
N -  1 

To’) = N - 1  C-{ro’ 0 k - k )  + r’u 0 k - k ) )  
k = O  

where T(h)  is the r x r autocovariance matrix of X(n) = (X , (n ) ,  . . . , Xr(n) ) ’ .  

matrix. 
(ii) The Walsh-Fourier spectrum f(2) is an r x r real positive semidefinite 

(iii) cov{ zi,(A)zdA)} +hdA)&iA) + L m ( A ) . L , i l + )  (2.10) 

as N + 03 where I,,iA) is the (i,j)th element of the r x r periodogram 
matrix I N ( A )  = d:(A)d:’(A) with 

N -  1 

d#) = N - ” 2  1 X(n)W(n, A). 
n = O  

3. SIGNAL-PLUS-NOISE MODELS FOR DISCRETE-VALUED TIME SERIES 

In this section we discuss models for discrete systems in which Walsh-Fourier 
analysis is desirable. We consider a discrete version of the signal-plus-noise 
models used for sinusoidal and for Gaussian processes. In general, write the r x 1 
vector, discrete-valued time series as 

X(n) = S(n) + ~ ( n )  (n  = 0, f 1, f2, . . .) (3.1) 

where S(n) is a random stationary discrete signal which possibly depends on 
unknown parameters 8 = (01, ..., Oq)l, and ~ ( n )  is a zero-mean discrete-valued 
process (possibly white noise) which is uncorrelated with S(n). We note that the 
support of X(n), S(n) and ~ ( n )  need not necessarily be the same and that there may 
be some dependence structure between S(n) and ~ ( n ) .  

For a specific example of such a process, consider a macro model on a finite 
state space (cf. Basawa and Prakasa Rao, 1980). Let X j n ) ,  j = 1 ,  . . . , r denote the 
number of individuals in state j at time n. In particular, X,(n) is the aggregate 
over several independent chains evolving simultaneously. Let Q,, j = 1 ,  . . . , r, be 
the probability of being in s ta te j  at any given time, and let Q denote the total 
number of individuals under consideration. Denote the r x 1 vector by X(n) = 
(X l (n ) ,  . . . , X,(n))’ and suppose that X(n) is Markov with transition probabilities 
p i j , 1 < i , j < r . T h e n , f o r n = 1 , 2  ,..., 

r 

EX,(n) = C E X i ( n  - I ) p i j ,  t < j < r 
i =  1 

from which we obtain the signal-plus-noise model : 
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456 D. S. STOFFER 

where e(n) = ( ~ ~ ( n ) ,  . . . , dn)) ’ ,  n = 0, 1, 2, ..., is a zero-mean multinomial-type 
white noise process and is uncorrelated with the random signal 

I 

S(n) = (Sl(n), . . . , SI(n))’, S,(n) = C X,(n - l)pij, 1 < j  < r. 
i = l  

It is easy to check the fact that 4 n )  and S(n) are uncorrelated. 
For the signal-plus-noise model presented in this section, Walsh-Fourier 

analysis would be useful for detecting whether a discrete signal exists in a given 
system and, if so, to determine the cyclic behaviour, in terms of sequency, of the 
signal. Moreover, for discrete systems in which the signal is observable but the 
process depends on unknown parameters, Walsh-Fourier methods can be used 
to consistently estimate the parameters as well as to consistently estimate the 
error spectrum. We discuss these types of analyses in the following subsections. 

3.1. Detecting a common signal 

Consider now the problem of detecting whether a common discrete-valued signal 
exists in Q replications of a discrete-valued time series {X,(n)}, q = 1, . . . , Q which 
are of the signal-plus-noise form (3.1). Many of our techniques follow those of 
their trigonometric counterparts developed by Brillinger (1973 ; 1975, section 7.9; 
1980). 

As an example, suppose we wish to analyse Q independent queueing situations 
hypothesized to be similar. Let X,(n), q = 1, . . . , Q, be the number of individuals 
in queue q at time n and suppose that EX&) = 8, for all n. Let S(n) be a zero- 
mean stationary discrete-valued signal hypothesized to be common to all queues, 
such as a rate of change in the number of individuals in a queue, and let ~ , ( n ) ,  
q = 1, . . . , Q be stationary zero-mean discrete-valued processes with common 
Walsh-Fourier spectrum. Whether a common signal exists among the Q 
queueing situations is expressed in whether the signal, or equivalently its Walsh- 
Fourier spectrum is identically zero. 

In general, we suppose that the discrete system is of the form X,(n), q = 1, . . . , 
Q ;  n = 0, 1, . . . , N - 1, N = 2 P ,  p > 0 integer, and can be modelled as 

(3.3) 
where 8, are constants, S(n) is a realization of a stationary discrete-valued time 
series with mean zero, and ~ , ( n ) ,  4 = 1, . . . , Q, are independent realizations of a 
zero-mean discrete-valued stationary time series which are uncorrelated with S(n). 
Let yss(h) and ye& h = 0, f 1, f 2, . . . , denote the autocovariance functions of 
S(n) and E&), 1 < q < Q, respectively. We assume that -yss(h) and -yee(h) satisfy 
condition (2.4) and that every linear combination of S(n) and E&), 1 < q < Q, 
satisfies one of Assumptions 2.1, 2.2 or 2.3. Denote the logical covariances of S(n) 
and ~ , ( n ) ,  1 < 4 < Q by zS&) and z&), respectively, and the respective Walsh- 
Fourier spectrum of S(n) and ~ , ( n ) ,  1 < q < Q, byfss(A) and&@), 0 < A < 1. The 
following conditions hold: 

x,(n) = e, + s(n) + ~ , ( n )  

(1) EX,(n) = 8,; 
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WALSH-FOURIER ANALYSIS OF DISCRETE-VALUED TIME SERIES 457 

Before we proceed with the analyses we need the following lemma. 

LEMMA 3.1. Let ( X , }  and { r,> be sequences of random variables on a probability 
space (Q, 9, 9) such that for all n, EX,’ < co and EY,’ < co. I f  X ,  5 X ,  Y, -% Y ,  
E X :  -+ E X 2 ,  and EY:  -+ E Y 2  as n -+ 00, then E X ,  r, + E X Y .  

PROOF. By Chung (1974, theorem 4.5.4) the conditions E X :  < co, X ,  3 X ,  and 
EX: + E X 2  imply the uniform integrability of {I X ,  I’}. Similarly, {I r, 1’) is uni- 
formly integrable, By the Cauchy-Swartz inequality, 

1 A I xn Y, I d p  d [ S,I xn l i d p ] l ” [  r, 12d!~]l” 

for any set A E 9 and hence by Chung (1974, theorem 4.5.3), the uniform inte- 
grability of ( 1  X ,  I’} and ( 1  r, 1’) implies the uniform integrability of {I X ,  r, I}. 
Clearly X ,  r, 3 X Y  and E X ,  < co, all n ;  hence by Chung (1974, theorem 
4.5.4), E X ,  -+ E X Y .  

The particular analyses of this section are based on the following theorem. 

THEOREM 3.1. Let (Xq(n ) ;  q = I ,  ..., Q :  n = 0, ..., N - I} satisfy the model 
conditions (3.3). Let Lj(,), N ,  m = 1, . . . , M be dejined as in Theorem 2.1. Then the 
jinite Walsh-Fourier transform 

N- 1 

has the representation 

dN. p(A j (m) ,  N) = urn + z p .  m a.s. (3.4) 
as N -+ cc where the u, are independent N(0, fss(A)) uariates and the zq, , are inde- 
pendent N(0, &,(A)) variates. Moreover, u,  and zq, , are mutually independent, 
1 < m < M , I < q < Q .  

PROOF. Taking the finite Walsh-Fourier transform of (3.3) we obtain 

d ~ ,  q(Aj(m). N) = d%’*j(m), N) + dEN. q(Aj(rn), N), 1 d 4 d Q 
where d i ( . )  and dh,q( . )  are the Walsh-Fourier transforms of S(n) and Eq(n), 
respectively. The constant term drops out in view of (2.6) and the fact that 
lj(,), # 0. Invoking Skorokhod’s Representation Theorem (Skorokhod, 1956) 
and Theorem 2.1, d;(Aj(m), N) and #N, q(Aj(,). N) have the representations 
d$(lj(,,,,, N) -+ U ,  as .  and dh, q(Aj(m), N) -+ zq, , a.s. as N -+ co, where the u, are inde- 
pendent N(0, f s s ( A ) )  variates and the zq, , are independent N(0, f , , (A))  variates. It 
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458 D. S. STOFFER 

remains to show that urn and zq,,, are mutually independent and, since they are 
jointly normal, it suffices to show that they are uncorrelated. Since S(n) and cq(n) 
are uncorrelated we have that E { d % A j ( m ) ,  N ) d $ ,  q(Aj(m), ,)} = 0 for all N ,  m = 1, . . . , 
M, and q = 1, . . . , Q. Since y,,(h) and y,,(h) satisfy condition (2.4) we have by (2.7) 

1 < q < Q. Thus by Lemma 3.1 we have E(d: (A j ( , ) ,  N ) d k ,  q(Aj(m),  N ) }  -+ E { u m Z q ,  m} 

E { d S , ( A j ( m ) ,  N)’} and ~ { d ; ,  q(Aj(m),  N)’} +L&(A) as N + 00, 1 < m G M ,  

as N -, co and hence E{umzq, , , }  = 0, m = 1, ..., M ,  q = 1, ..., Q. 

Using the representation (3.4), we may proceed with the problem of determin- 
ing whether a common discrete-valued signal exists. Our analysis follows that of 
the analysis of random effects models (cf. Scheffk, 1959). Consider the quantities 

Q 

q = l  
d ~ ,  . ( i j ( m ) ,  N )  = Q - 1 d N ,  q(Aj(m),  N ) ,  1 G m G M ,  

M 

m = l  

By Cochran’s Theorem and in view of the representation (3.4), the quantities (3.5) 
and (3.6) have the almost sure representations 

M 

m = l  

and 
Q M  

q = 1  m = l  
C C (24, m - z . , m12 =MMt(Q- 1) a.s. (3.8) 

respectively, as N + co, where the x’ variates in (3.7) and (3.8) are indepen- 
dent. The fact that the x’ variates are independent follows from the fact that 

The test of the null hypothesis that there is no common signal, S(n) = 0 or 
equivalently fss(l) = 0, may be examined for particular sequencies i by compar- 
ing 

COV(Z,. m - z . ,  m ,  z . ,  m) = 0. 

M Q M  

m =  1 q = l  m = l  
Q C d i ,  . (A j (m) ,  NYM/ C C C ~ N ,  q ( i j ( m ) ,  N) - d ~ ,  . ( i j ( m ) ,  N)I’/M(Q - 1) (3.9) 

with an F M ,  M ( Q -  

tion 
distribution. In view of (3.7) and (3.8), (3.9) has the representa- 

a sN+co .  
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WALSH-FOURIER ANALYSIS OF DISCRETE-VALUED TIME SERIES 459 

Using the representations (3.7) and (3.8), it is easy to find an asymptotically 
( N  --+ co) unbiased estimate of the Walsh-Fourier spectrum fss(A) of the unob- 
served signal, sayfss(A), 0 < A < 1 .  Denoting the numerator of (3.9) by Qfxx(iL) 
and the denominator of (3.9) byX,(A), we see that the desired quantity is 

f s s ( 1 )  = fxz (A)  - Q - %,(A). (3.10) 

The techniques of this section may easily be extended to more complicated 
designs. For example, a balanced one-way random effects design in which obser- 
vations are discrete-valued time series is discussed in Stoffer (1985b, pp. 19-22); 
see also Brillinger (1980). 

3.2. Estimating regression parameters when the discrete signal is obseruable 

In this section we concentrate on the discrete signal-plus-noise model where the 
signal is observable but the vector process of interest, X(n), n = 0, 1, ..., N - 1, 
depends on unknown regression parameters. At the end of this section, we apply 
the results of this section to estimating the transition matrix in a Markov model. 
We suppose that we may write the model (3.1) in the r x 1 vector form 

X(n) = 8 + BS(n) + E(n) (3.1 1)  

where 0 is an r x 1 vector of constants, S(n) is a q x 1 vector, observable discrete- 
valued signal, B is an r x q matrix of regression parameters, and E(n) is a discrete- 
valued zero-mean white noise process which is uncorrelated with the signal S(n). 
Let T,,(h) denote the autocovariance matrix of S(n), where C T m  I/ T,,(h) I /  < 00. 

Further, we assume that every linear combination of the components of &(n) 
satisfy one of Assumptions 2.1, 2.2 or 2.3. Let zss(j) and z&) be the logical 
covariance matrices of S(n)  and E(n), respectively (cf. 2.9) and note that zEE( j )  = 0, 
for j # 0, where 0, is the r x r matrix of zeros. Let fss(i) = {fs,,Sb(A)}, 
1 d a, b d q, be the q x q positive definite Walsh-Fourier spectrum of S(n) and 
letfEE(A) = {fE,,,,(A)}, 1 d a,  b d r, be the r x r Walsh-Fourier spectrum of E(n). 

Taking transforms in (3.11) and following the previous section, we have the 
representation 

(3.12) 

where Oa,J 1 )  denotes a vector variate tending to the zero vector almost surely as 
N + a, z ,  are independent multivariate N(O,AE(A)) variates; 

4 3 A j ( r n ) .  N) = B&Aj(m),  N) + Zrn + Oa.s.(l) ( m  = 1 ,  . . . *  M )  

N - 1  

&Aj(rn), N) = N -  1 X(n)W(n,  i b j ( m ) .  N) 
n = O  

and 
N -  1 

di(Aj{rn), N) = N - " 2  C S(n)W(n,  A j ( m ) ,  N) 
" = O  

denote the r x 1 and q x 1 finite Walsh-Fourier transforms of the vector time 
series X(n) and S(n), respectively. 
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460 D. S. STOFFER 

If we assume that M 2 4 + r, we may consider the asymptotic problem of 
estimating the parameter matrix fi and the error spectrum in the multivariate 
analysis setting (see Anderson, 1958, chapter 8). Similarly, tests of hypotheses 
about the elements of /? may be carried out by MANOVA techniques with an 
appropriate partitioning of that matrix (cf. Anderson, 1958, section 8.3). Follow- 
ing least-squares theory in view of (3.12), the estimate of fi as a function of 
sequency is given by 

m= 1 

where d i , a ( * )  and dR, , ( . )  denote the finite Walsh-Fourier transform of the ath 
element of S(n) and dn) ,  respectively. Then as M ,  N + 00 with M / N  -+ 0 we have 

(l) ;b(') sb('); 

(2) Efz$(n) + L a ,  &b(A); 

(3) EfE,m)  = 0;  
(4) M WfK: !*(A>> + 2CfS . .  ,(')I2; 
( 5 )  var{fzl(A>> 2 C f , a . & b ( A ) 1 2 ;  

(6) var{fzl(A)> + L o ,  Z,(')fsb. Sb(')* 

It follows from the above that as M ,  N -+ 00 with M / N  -+ O,f:;sNb(A) -+fs,,sb(lz), 

We now show the consistency of the estimates (3.13) and (3.14). 
f E ; l ( A )  -+Lo, $), andfE;,N,(A) -+ 0 in mean square and hence in probability. 

THEOREM 3.2. Let the model assumptions (3.11) be satisfied. Then as M ,  N -+ co 
with M / N  -+ 0 the estimates BM, "(2) given in (3.13) and f̂ :* "(A) given in (3.14) are 
consistent in probability for and he@), 0 < I < 1, respectively. 
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WALSH-FOURIER ANALYSIS OF DISCRETE-VALUED TIME SERIES 46 1 

PROOF. Using the definitions of (3.15), write 

P M .  = P + f$' " ( A ) C f $  "(I) ]  - (3.16) 

where f $ - " ( A )  = { f E ; G ( A ) }  and f $ " ( A )  = {fE:SNb(A)} are r x q and q x q 
matrices, respectively. By previous results we know that as M ,  N -+ 00 with 
MIN -+ 0, f "(A) Afss(A) which is positive definite, and f$*  "(A) 1: 0, x 4  where 
O r x q  is an r x q matrix of zeros. In view of (3.16) we see that sM, "(2) is consistent 
for f i . 

To show the consistency off:*"(A) given by (3.14), first note that we may write 
the r x r matrixfE."(A) = ( f E ; c ( A ) }  whose elements are given by (3.15~) as 

M 

f 2' "('1 = ~ [ d s ( A j ( m ) ,  N )  - f idsN(Aj(m) ,  N ) l [ d s ( A j ( m ) ,  N) - b d S , ( A j ( m ) ,  N ) ] ' .  
m =  1 

We close this section with an application to Markov chains. In particular, 
consider the macro model given by (3.2) and suppose that we are interested in 
estimating the transition probabilities p i j  . We shall assume that detailed tran- 
sitions are not available, otherwise, the p i j  may be estimated by MLE techniques, 
see Basawa and Prakasa Rao (1980, section 2.1). Recall that the model is of the 
form 
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462 D. S. STOFFER 

where X,(n) is the (aggregate) number of individuals in state 1 (over several inde- 
pendent Markov chains) at time n and is zero-mean white noise which is 
uncorrelated with Xk(n - 1) for k = 1, . . . , r, and r is the number of states. We 
suppose that data is available in the form {X,(n), 1 = 1, ..., r ;  n = 0, ..., N - l} 
and that the total number of individuals in the system, viz. x= Xl(n), is fixed. To 
avoid singularities, we remove X,(n) from the model (3.18). Let T be the total 
number of individuals in the system, then for I = 1, . . . , r - 1, 

NOW, put 81 = T(1 - Pj l ) ,  s,(n) = x,(n - 1) + c;,: Xk(n - 1) with SLO) 
0, and let X(n) = (Xl (n) ,  ..., Xr-l(n))’, 8 = (el, ..., S(n) = (Sl(n), ..., 
S,- l(n))’ and s(n) = (&,(n), . . . , E,- l(n))’. We have already seen that dn) and S(n) are 
uncorrelated. In view of (3.19), the model (3.18) may now be represented in the 
form of (3.1 l), that is, 

x(n) = e + P S ( ~ )  + e(n), n 2 1 

where P is the (r - 1) x (r - 1) matrix of unknown transition probabilities 

If we choose M sequencies, A j ( m ) : N ,  m = 1, . . ., M ,  A j ( m ) , N  # 0 in such a way that 
M 2 2(r - 1) we obtain the consistent estimate of the transition matrix 
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WALSH-FOURIER ANALYSIS OF DISCRETE-VALUED TIME SERIES 463 

where jjr(,?) is the jlth element of p(1). The consistent estimate of the error spec- 
trum is 

A,@) = f y ( A )  - P(A) f$  N ( A ) P ' ( A ) .  

The actual implementation of this estimation procedure is then based on the 
methods described in Appendix A. 

APPENDIX A 
In this appendix we discuss the computation of the finite Walsh-Fourier transform for samples of 
length N = 2p, p z 0 integer. The discrete Walsh functions are calculated via the Hadamard matrix 
H ( p ) ,  which is defined to be the symmetric orthogonal N x N matrix whose (u. u)th element, u, u = 0, 
1. ..., N - 1, is equal to d(u, rr) = (-1)u'v? where the binary representations of u and 11 are 
given by (up- u p -  2 ,  . . . , uo), respectively, u .  and uj  are either 0 or 1. For 
example, with N = 8, the (1, 5) element of H ( 3 )  is 4(1. 5) = (-1)040+1 = -1, whereas the (3, 7) 
element is 4(3, 7) = ( -  1)'"" = 1. The Hadamard matrix gives the discrete Walsh functions as rows 
(or columns) in what is called natural or Hadamard ordering. To obtain the Walsh functions in 
sequency order, we can reorder the rows of H ( p )  according to the number of sign changes. We denote 
the sequency or Walsh-ordered Hadamard matrix by H,(p). An alternate method of obtaining HW@) 
from H ( p )  uses 'bit-reversal Gray code' to rearrange the rows; however this is essentially the same 
technique as counting the sign changes (see Ahmed and Rao, 1975. for details). Since these approaches 
involve counting sign changes, they are not very efficient procedures. We shall discuss a fast Walsh- 
ordered Hadamard transform in a moment. The Hadamard matrix can be generated recursively, 
H ( 0 )  = 1, and 

u p -  L ,  . . . , uo) and ( u p -  

so, for example, 

11 -1  - 1  11 
Denote H(2)  = [h0(2),  h1(2),  h2(2),  h,(2)]. where h,(2), i = 0, 1, 2, 3, is the ith column of H(2) ,  then the 
corresponding Walsh-ordered Hadamard matrix is H,(2) = [h0(2), h,(2), h,(2), h1(2)]. The procedure 
of obtaining the Walsh-ordered Hadamard transform from its definition requires either storage of the 
Hadamard matrix, or recomputation whenever the elemexts of H,(p)  are needed. Hence, either the 
sample length is restricted to about p = 10 or 20, or the procedure is extremely slow. There are, 
however, fast methods which can reduce the number of computations (additions and subtractions) by 
about 2 p - 1 / p  times less than by using the definition. The method we discuss here may be found in 
Ahmed and Rao (1975, chapter 6), who also gives a computer subroutine. The Walsh-Hadamard 
matrix can be computed as 

P 
Hwb) = n Hi@) . (Al) 

I =  I 

where rFS  G,  
I 
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with 

B =  

D. S. STOFFER 

- 
1 0 0 010 0 0 0- 
0 0 0 0 1 1  0 0 0 

1 0 1 0  0 0 0 

0 1 0  010 0 0 0 
0 0 0 010 1 0  0 

0 0 
0 0 0 0 1 0  0 1 0  _ _ _ _ _ _ _  L _ _ _ _ _ _ _  

I 

0 0 0 1 1 0  0 0 0 
-0 0 0 0 1 0  0 0 1 -  

and I, being the s x s identity matrix. The matrix B in (Al) is a matrix which bit-reverses the order of 
the data. For example, with N = 23, the bit-reversal of 1 = (0, 0, 1) is 4 = (1, 0, 0), and the bit-reversal 
of 3 = (0,1,1) is 6 = (1, 1,0), so that X(1)  is exchanged with X(4)  and X(3)  is exchanged with X(6)  in 
the data vector. If X = (X(O), . . . , X ( N  - 1))' is the data vector, N = 2', the fast finite Walsh-Fourier 
transform is computed as 

where 1, = (O/N, 1/N, . . . , (N - l)/N)'. For example, if N = 23, the Walsh-ordered Hadamard matrix 
can be decomposed as 

where 

APPENDIX B 
In this appendix we prove the central limit theorem stated in Section 2, which is based on condition 
(2.4) and Assumption 2.3. The proof of the theorem is based on a martingale central limit theorem 
given in Brown (1971, theorem 2) and a limit theorem for approximating sequences given in Anderson 
(1971, theorem 7.7.1). We now state and prove the theorem. 

THEOREM. Let {X(n);  n = 0, & I, &2, . . .} satisfy condition (2.4) and Assumption 2.3. Then the discrete 
Walsh-Fourier transform, d&), converges in distribution to a normal variate with mean zero and 
variancef(1) given by (2.3). 
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WALSH-FOURIER ANALYSIS OF DISCRETE-VALUED TIME SERIES 465 

PROOF. Fix 1 E [O. 1) and write d,(1) = N-"' 1::; X(n)W(n, A) = N-"' c:=, y,. Choose an 
integer k such that 2ti < k < N and put T = [ N / k ] ,  where [ . I  is the greatest integer function. For 
j = 1, 2, ..., T ,  define y,  , = y,-,,,+, + yo- l )h+2 + . . .  + y j k - .  and Zj,,  = y j k - A + l  + y j h - r + 2  + . . .  
+ y - ,  and let u k , ,  = N - ' / 2  xJsl Z j , !  and u , , ,  = N - ' / Z ( y k T + I  + y, , .+,  + . . .  + y,). Clearly d,(A) = 

+ u,, , + uk, , . We will show that uk, , -+ 0 in mean square as N + mi uniformly in k ,  
uk, , + 0 in mean square as k + m uniformly in N ,  and N -  ' I 2  1:- $, , converges in law to a normal 
variate as  N + (I, and k + m. Thus, the theorem will follow from Anderson (1971. theorem 7.7.1). 

c,'= , ?. N - lli: 

Using Minkowski's inequality with r = N - Tk < k and the fact that I W(n, 1) I = 1, 

E(u:,  ,}'/' = N-1/2{E(y,T+1 + ... + y N I  )211iz < N - ' I 2 i  E { I X ( k T  +j)12}1/2, 
I =  1 

from which we obtain 

E{u: , }  < r2N- ' y (0 )  < k Z N - ' y ( 0 ) ,  

and hence the desired result follows. In a similar manner we can show that 

E { u : ~ ) .  < TN-'ti 'y(O) < k- ' t i2y(0)  

to obtain the desired result for uk. ,. 
To establish a central limit theorem for N-" ,  IT=, r;,, we use a martingale central limit theorem 

found in Brown (1971, theorem 2). We shall follow Brown's notation. Let k be fixed and let S k ~  = 

1,'- 5, recall that 9, is the u-field generated by ( X G ) ,  j < n). Then, {S,, T ,  .S,,-,; T = 1, 2, . . .) 
form a martingale. To see this note that 

T 

'{'k,T+I I 9 k T - r }  = 1 T . k  + E { y T + l , k l F k T - x ) .  
j =  1 

The terms in Y , + l . h  are { X ( n ) W ( n ,  A), n = kT + j ;  j = 1, 2, . .  ., k - ti). We are given that E ( X ( k T  
+ j ) ~ . S ~ r + j ~ , ) = O a . s . a n d s i n c e . F k , ~ , c F k , + j ~ ~ . l  < j <  k- t i ,wehave  

E { X ( k T  + j ) l .FkT-J = E E { X ( k T  + j ) ~ F , r + j - x } ~ . F k T - x  = 0 a s .  

and hence E{YT+l,hl,FkT-K} = 0 a.s. as was to be shown. Following Brown (1971), put VE, = 
1,5 I E(Y;, , I ykIj-  and s;. = EVE, r. A typical term in v?. is E { y l J -  , + I  Y,- 1y + m  I F k [ j -  , - K } ,  

1 < 1, m < k ~ K ;  1 < j < T .  Let n ,  = (j - 1)k + I and n2 = (j - 1)k + m. then by hypotheses of the 
theorem, 

E { y n , y n 2 1 ' F t i - l l k - r :  = W n ,  0 n 2 .  4E{X(nl)X(n2) I.FU-l)k-r} 

= W(n,  0 n,, A)y(n2 - nl) a s .  

= E1YD,Y">).  

Hence, V i ,  = cj'= EY: , = EV;, = s:, a s .  The application of Theorem 2 of Brown (1971) entails 
showing that as T + m, 

(9 .,'T v: T + 1 
P 

T 

(ii) SX. + i: E !  Y:. , I(I 5, , I > .=,. T ) }  + 0 
j =  I 

for any e > 0, where I (  . )  is the indicator function. We have already established (i) and we proceed 
with establishing (ii). First, we show that sup, E{IX(n)12+' } (m for some 6 > 0 implies that 
supj E{I Y j ,  , lz+'] < m. Let n, = (j - l ) k  + 1 and a(nJ = W(n,,  A). Then by Minkowski's inequality 

E {  I E;, 1' + 6 }  '1" +" = E{I a(n l )X(n , )  + . . + u(n , -k )X(n , -x )  1' +') '1" +'I 
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466 D. S. STOFFER 

so that for any j, 

E{l q , k I 2 + ' }  < ( k  - K)2+dsup, E{IX(n)1'+'} < 
as was to be shown. Following a similar argument to the one above, we can show that EY;,  is 
uniformly bounded, and since EY; does not vanish as j -+ co we see that s:, = B(T). Also, one can 
show that since supj E { l y / ,  1 2 + ' }  < co for some 6 > 0, there exists a random variable & with EY: < 
co such that 

E{ y; k I(l q, k I > u)}  < E{ y:I(l & I > u)}  

for all j and all u 3 0. See Stoffer (1985a, lemma 3.2). Thus, 
T 

/= 1 

as T -+ co. Hence, by the Brown (1971) martingale central limit theorem we have that for fixed k, 
T T 

1 '?.k 
T-1'2 1 ybk = (N1/2T-1/2)N-1/2 

j =  1 j =  1 

converges in law to a normal variate whose variance depends on k as T -+ co or equivalently N -+ co. 
Clearly then, for fixed k, ( N ' ' Z T - 1 / 2 k - 1 / 2 ) N - 1 / 2  E=l Y;,k converges in law to a normal variate as 
N -+ co. Letting k -+ w establishes the desired result. 
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