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Abstract. An approach to smoothing and forecasting for time series with missing
observations is proposed. For an underlying state-space model, the EM algorithm is used
in conjunction with the conventional Kalman smoothed estimators to derive a simple
recursive procedure for estimating the parameters by maximum likelihood. An example
is given which involves smoothing and forecasting an economic series using the maximum
likelihood estimators for the parameters.
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1. INTRODUCTION

Many problems which arise in the analysis of data occurring in such diverse
fields as air pollution, economics, or sociology require the investigator to work
with incompletely specified noisy data. As examples one might mention pollution
data where values can be missing on days when measurements were not made
or economic data where several different sources are providing partially complete
data relating to some given unobserved series of interest. General techniques
are needed both for smoothing and interpolating sections of the record with
missing values and for constructing reasonable forecasts for future values.

A number of approaches are possible which are based on a variety of modelling
assumptions. A linear or non-linear regression model can be assumed for the
mean, with an additive error superimposed (cf. Anderson (1971) or Hannan
(1970)). The fitting of these models by estimating the parameters of the mean
value function leads to smooth interpolations and forecasts which do not depend
on observing the underlying data at all time points. For non-stationary series,
one may use various exponential smoothing techniques such as those given by
Holt (1957), Winters (1960), or Brown (1963) (cf. Makridakis (1978)). Such
techniques generally require equally spaced data points and often assume that
the parameters in the smoothing procedure can be specified in advance. One
might also fit the autoregressive integrated moving average (ARIMA) model
advocated by Box and Jenkins (1970) with the forecasts defined as conditional
expectations. Smoothing of stationary series can also be approached using a
symmetric moving average filter with an appropriate frequency response.

0143-9782/82/04 0253-12 $02.50/0 © 1982 R. H. Shumway and D. S. Stoffer
JOURNAL OF TIME SERIES ANALYSIS Vol. 3, No. 4

253



254 R. H. SHUMWAY AND D. S. STOFFER

It has been suggested by Jones (1966), Morrison and Pike (1977), and others
(cf. Kendall (1973)) that the general state-space or Kalman filter model (Kalman
(1960), Kalman and Bucy (1961)) might provide an appropriate setting within
which to parameterize smoothing and forecasting problems. In this case, the
p x 1 idealized vector series of interest x; is not observed directly but only as a
component in the random regression model

ytzMx'+vt,’ t=1’2""’n (1)

where M, is a known g Xp design matrix which expresses the pattern which
converts the unobserved stochastic vector x, into the g X 1 observed series y..
The error or noise terms v, t =1, ..., n are assumed to be zero-mean uncorre-
lated normally distributed noise vectors with common g Xq covariance matrix
R. The random series x, is assumed to be of primary interest; it is modelled as
a first order multivariate process of the form

x,=bx,_1+w, t=1,...,n, (2)

where ® is a p Xp transition matrix describing the way the underlying series
moves through successive time periods. The process x, may be non-stationary
since we do not make specializing assumptions about the roots of the characteris-
tic equation of ®. The initial value x, is assumed to be a normal random vector
with mean vector g and p Xp covariance matrix . The p X 1 noise terms w,,
t=1,..., narezero-mean uncorrelated normal vectors with common covariance
matrix Q.

The motivation for the model defined by (1) and (2) originates from a desire
to account separately for uncertainties in the model as defined by the model
error w, and uncertainties in measurements made on the model as expressed by
the measurement noise process v, It might be helpful to envision (1) as a kind
of random effects model for time series, where the effect vector x, has a correlation
structure over time imposed by the multivariate autoregressive model (2). In
this context, it is a generalization of the ordinary autoregressive AR model which
accounts for observation noise as well as mode] induced noise. One may regard
the M, as fixed design matrices which define the way we observe the components
of the vector x,. For example, in this paper, it provides a convenient method for
dealing with the incomplete data problems introduced by missing observations.

The primary aim of a smoothing or forecasting procedure is to estimate the
unobserved series x; for t=1,2,...,n (smoothing) and for t=n+1, n+2,...
(forecasting) using the observed series yi, ys, ..., y.. If one knows the values
for the parameters g, 2, ®, Q, and R the conventional Kalman smoothing
estimators can be calculated as conditional expectations and will have minimum
mean square error. This is equivalent to regarding the process x, as a random
parameter vector in the Bayesian sense which depends on the prior values
assumed for the parameters.

Since the smoothed values in a Kalman filter estimator will depend on the
initial values assumed for the above parameters, it is of interest to consider
various ways in which they might be estimated. In most cases this has been



APPROACH TO TIME SERIES SMOOTHING 255

accomplished by maximum likelihood techniques involving the use of scoring
or Newton-Raphson techniques to solve the nonlinear equations which result
from differentiating the log-likelihood function (cf. Gupta and Mehra (1974)).
Several examples have been given, notably by Ledolter (1979) and Goodrich
and Caines (1979), which demonstrate the feasibility of these methods for several
specific cases. The maximum likelihood estimation of the parameters in an
autoregressive moving average (ARMA) process by similar methods has been
considered by Harvey and Phillips (1979) and by Jones (1980).

The likelihood methods applied in the above references typically have several
unattractive features which can be circumvented using the EM (Expectation
Maximization) algorithm described in Dempster, et al. (1977). First, the correc-
tions in the successive iterations generally involve calculating the inverse of the
matrix of second order partials which can be rather large if there are a significant
number of parameters. Furthermore, the successive steps involved in a Newton—
Raphson may not necessarily increase the size of the likelihood or one may
encounter extremely large steps which actually decrease the likelihood. The EM
steps, however, always increase the likelihood and one is guaranteed convergence
to a stationary point for an exponential family (cf. Wu (1981)). One may find
either a local or global maximum there or one may move indefinitely along a
ridge (cf. Boyles (1981)), depending on the shape of the likelihood function.
Frequently, the EM equations take on a simple heuristically appealing form in
contrast to the highly non-linear appearance of the Newton-Raphson or scoring
corrections. Of course, since the matrix of second partials is never computed in
the EM procedure, it is not available for providing estimated standard errors;
these partials can still be approximated by perturbing the likelihood function in
the neighborhood of the maximum. Another disadvantage is that the EM
algorithm may converge slowly in the latter stages of the iterative procedure;
one may want to switch to another algorithm at this stage.

This paper interprets the tasks of smoothing or forecasting in a missing data
context as basically the problem of estimating the random process x, in the
state-space model (1), (2). The conditional means provide a minimum mean
squared error solution based on the observed data if the parameters u, X, ®,
Q, and R are known. If the parameters are not specified in advance, they are
estimated by maximum likelihood using the EM algorithm. This requires both
the conventional recursive forms for the conditional means and covariances and
a new recursion which is given in Appendix A. We show also that a very general
pattern of missing observations can be tolerated and indicate a correction
procedure for adjusting the estimators. An example is given which involves
smoothing and forecasting an economic series which is only partially observed
by two different sources over the time period of interest.

2. MAXIMUM LIKELIHOOD ESTIMATION USING THE EM ALGORITHM

In order to develop a procedure for estimating the parameters in the state-space
model defined by (1) and (2), we note first that the joint log likelihood of the
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complete data xo, X1,..., X ¥1, ..., ¥, can be written in the form

log L= —3log|S|~3(xo—p) S (xo—p)

- 51001~} ¥ (5~ b5,/ Q7 ~Pxic) ©)

n i Yy —
_EIOg |R|_% Zl (y—Mx)R l(yt_Mxt)
t=

where log L is to be maximized with respect to the parameters u, =, ®, Q, and
R. Since the log likelihood given above depends on the unobserved data series
x, t=0,1,...,n, we consider applying the EM algorithm conditionally with
respect to the observed series yi, ys,...,y,. That is, define the estimated
parameters at the (» + 1)st iterate as the values u, =, ®, Q, R which maximize

G(”‘, 2: (b, QsR)=Er(logL|yla'-~9Yn) (4)

where E, denotes the conditional expectation relative to a density containing
the rth iterate values u(r), =(r), ®(r), Q(r), and R(r). An iterative procedure
defined as a sequence of such steps has been shown in Dempster, et al. (1977)
to yield non-decreasing likelihoods, with the fixed point defined as a stationary
point of the likelihood function.

In order to calculate the conditional expectation defined in (4), it is convenient
to define the conditional mean

x;=Ex|ys,...,y) (5)
and covariance functions
Pi=cov(xys,...,¥s) (6)
and
Py =00V (X, Xeoilys, - . ., V) 7

For example, the random vector x; is the usual Kalman filter estimator whereas
xt,t=0,1,...,n is the minimum mean square error smoothed estimator of X,
based on all of the observed data. The random vector x for ¢ >n is the forecast
value for the underlying series. A set of recursions for calculating x; and
P; from standard Kalman filtering results (cf. Jazwinski (1970)) are given
in Appendix A; we also give a new recursive method for computing the
covariance P;,_;.

Now, taking conditional expectations in (3) yields

Gm, 3, ®,Q,R)=—7log X[ -3 tr {E7'(P§ + (xf — ) (x5 —p)')}

—glog 10|-3tr {Q"Y(C - B® -~ ®B' + PAD')}

(8)
—glog IR|

e {R7 L (00 MaD ).~ Mx?y+ MPIM! )
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where tr denotes the trace and

A=Y (Ploy+xiaxily). 9
t=1
B=Y (Pl +xixiy), (10
t=1
and
C=75Y (P}+xix}'). (11)
(=1

The Kalman filter terms x7, P?, and P;,_, are computed under the parameter
values u (r), ®(r), Q(r), R(r) using the recursions in Appendix A. Furthermore,
it is easy to see that the choices

d(r+1)=BA™", (12)
Qrr+1)=n"Y(C-BA™'B"), (13)
and
R(r+1)=n"" i ((y: —Mx )y —Mx;) +M,PM;] (14)
t=1

maximize the last two lines in the likelihood function (8). The first term is
analogous to a single replication of the multivariate normal likelihood so that
one may take po(r +1)=xp and fix the value of T at some resonable baseline
level. The estimation of i and X for a replicated Kalman filter model is considered
in Shumway, et al. (1981).

In certain cases one may want to constrain the elements of ®. For example,
under the restriction

OF =G, (15)
with F and G specified p X s (s < p) matrices, we obtain the constrained estimators
b, =0 (PF-G)(F'AT'F)'F'A™! (16)

and
Q.=Q+(®F -G)F'A™'F) (®F -GY (17)

corresponding to (12) and (13), where the argument (r + 1) has been suppressed
for notational convenience.

The value of the log likelihood function can be calculated at each stage using
the ‘innovations’ form (cf. Gupta and Mehra (1974))

logL2 -3 ¥ log|M,P;"'M; +R||
t=1

=1 L (=M Y(MPTMI R (v Mk, (18)
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A recommended procedure for the EM computations is as follows:

1. Calculate x;, P;, P71 using equations (A3)-(A12) in Appendix A with
the initial estimators g (0), ®(0), Q(0), and R (0).

2. Estimate po(1)=x¢ and use equations (12), (13), and (14) to get &(1),
Q(1), and R(1) respectively.

3. Repeat 1 and 2 above until the estimates and the log likelihood function
(18) are stable.

It should be noted that conventional maximum likelihood estimation pro-
cedures as in Gupta and Mehra (1974), Goodrich and Caines (1979), or Jones
(1980), use equation (18) in conjunction with conventional non-linear methods
such as Newton—Raphson or scoring. Such methods may have one or more of
the disadvantages mentioned in Section 1. In contrast, the sequence of estimators
defined in equations (12), (13), and (14) are very simple to apply since they are
essentially just multivariate regression calculations. The price to be paid for this
simplicity is in the additional computational effort needed to calculate the
smoothed estimators x;, P¢, and P;,; required for (12), (13), and (14). This
requires that one apply the backward recursions (A8)-(A12), whereas the con-
ventional ‘innovations’ likelihood (18) only requires the forward recursions
(A3)-(A7). Of course, the usual method for calculating the derivatives of the
log likelihood function (18) is to set up a system of recursions for the derivatives
of x{”' and P{™' which introduces a comparable amount of computing
effort. Furthermore, the end result of interest is the smoothed series x; and its
covariance matrix P, which will need to be computed eventually anyway.

While the preceding material treats a missing data problem in the sense that
the process x, of interest in the state-space model (1) and (2) is unobserved, a
more severe pattern of missing observations can be tolerated. The next section
indicates how to approach the estimation and forecasting problem when elements
of the observation vector y, are missing for certain values of ¢.

3. MISSING OBSERVATION MODIFICATIONS

Suppose that at a given step, we define the partition of the q X 1 observation

vector y, = (y(zl)’, y§2)’), where yfl) is the g1 X 1 observed portion and y§2) is the

q2 % 1 unobserved portion. The overall complete data observation equations may
now be expressed in the partitioned form

(G- G2
y@ M2 )ET @
where M" and M® are q1 %X p and g, X p matrices and

1)
v.\ _(Ru R12)
cov (uﬁ”)_(Rzl o) 17)
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For the case where unobserved and observed components have uncorrelated
errors (R1, = 0in (20)) only a very simple modification is needed in the estimation
and forecasting equations.

By a somewhat lengthy extension of the usual orthogonality arguments (cf.
Stoffer (1982)) one may establish that the equations in Appendix A hold for
the missing data case given above if one makes the replacements y; = (y b0
and M, =M 51)', 0'), where 0 denotes a g, X p matrix of zeros. That is, if y, is
incomplete, the filtered and smoothed estimators can be calculated from the
usual equations by entering zeros in the observation vector y, where data is
missing and by zeroing out the correspondmg row of the design matrix M,. This
leads to the smoothed estimators x™ and the covariance functions P(") Pﬁ':) 1
in the missing data case.

The maximum likelihood estimators as computed in the EM procedure require
that one take the conditional expectation of (3) under the assumption that y, is
incompletely observed In this case, defining the incomplete data as Y =
", y&, y), we need only be concerned with the third term of (3), since
the first two terms will have expectations which depend only on ™, P™, and

P{),. The expectation of the third term will depend on evaluating
EPY.))=E[E Y, x)|Y)]
=E[M{”x+RauR1i (5 —M x)| Y]
=Mx” +RuRi1 (v ~Mx(™) 1)

and
E.(y®y®' Y, x) =Rz~ RuRURu+E (| YV, x)E (|, x).  (22)

Substituting these two expressions in the conditional expectation of (3) with the
assumption that R, =0 leads to using equation (14) with the following
modifications. The missing parts of the y, vector and the corresponding rows of
M, are replaced by zeros as before. In this case the term which appears in the
sum (14) defining R(r +1) will get no contribution from either of the first two
terms and one simply adds in the missing data estimate for the covariance from
the previous iterate. To be specific, let y; (y(l)’, yﬁz)' ) as before where the
missing data part of the vector at time ¢ is denoted by y . Then, the contribution
to R(r+1) will be of the form

Coon- {( (1) M(l) ("))(y,—Mfl)xg"))'
! 0 0

(5 e oe(§ o))

where R,(r) is the submatrix of the estimated covariance matrix at the rth step.
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4. AN EXAMPLE

As one example of the kind of missing data which can be handled, we consider
the health series representing total expenditures for physician services as
measured by two different sources. Table I, taken from Meltzer, et al. (1980),
shows the total physician expenditures by year as measured by the Social Security
Administration (SSA) and the Health Care Financing Administration (HCFA).

TABLE 1
PHYSICIAN EXPENDITURES (IN MILLIONS)

1SSA 2HCFA Initial MLE
Year Yie Ya: x; ‘/P;l xt ‘/IT:'
1949 2633 — 2582 67 2541 178
1950 2747 — 2726 66 2711 185
1951 2 868 — 2874 65 2 864 186
1952 3042 — 3055 65 3045 186
1953 3278 — 3275 65 3269 186
1954 3574 — 3521 65 3519 186
1955 3689 — 3753 65 3736 186
1956 4067 — 4075 65 4063 186
1957 4419 — 4443 65 4433 186
1958 4910 — 4873 65 4876 186
1959 5481 — 5312 65 5331 186
1960 5684 — 5647 65 5644 186
1961 5895 — 6001 65 5972 186
1962 6498 — 6504 65 6477 186
1963 6891 — 7073 65 7032 185
1964 8065 — 7871 64 7 866 179
1965 8745 8474 8566 54 8521 110
1966 9156 9175 9261 53 9198 108
1967 10287 10142 10212 53 10 160 108
1968 11099 11104 11250 53 11159 108
1969 12 629 12 648 12 661 53 12 645 108
1970 14306 14 340 14228 53 14289 108
1971 15835 15918 15752 53 15835 108
1972 16916 17 162 17 194 53 17171 108
1973 18200 19278 19073 54 19106 109
1974 — 21568 21733 64 21675 119
1975 — 25181 24741 68 25027 120
1976 — 27931 27573 - 80 27932 129

! Social Security Administration, Compendium of National Health Data, January, 1976.
2 Health Care Financing Administration, Health Care Financing Review, Summer, 1979.

Note that the HCFA series is missing for the first sixteen years, whereas the
SSA series is not measured for the last three years. The problem is to merge
these two separate sources of information (yi, y2,) into an overall estimated
expenditure series (smoothing) and then to forecast each series for a given
number of years in the future.

In order to motivate the use of the model for this particular case, we assume,
first of all, that the two agencies are trying to measure essentially the same
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expenditure series x, The extent to which each agency is successful will be
reflected by the measurement errors v, = (v1, ¥r2)’ and their variances and covari-
ances in the matrix R. We assume that the measurement errors made by the
two agencies are uncorrelated so that R;,=0. The pattern for observing the
data is fixed by noting that the design matrix M, can be taken as (1, 1)’ when
both series are observed (1965-1973), M, = (1, 0) when only the SSA series is
observed (1949-1964), and M, = (0, 1)’ when only the HFCA series is observed
(1974-1976). The underlying series x, as observed in table I appears to be
growing exponentially so that the model given by equation (2) is not an unreason-
able one. The ‘inflation factor’ & may not be constant over time and, in fact,
may not be necessarily a reflection of any common cause. The effects of popula-
tion growth, level of medical care and pure price inflation are clearly present in
varying degrees over the time period of interest. The assumption that the
parameters vary over time can be investigated by obtaining locally smoothed
estimates for @, R, and Q over a time band, since the Kalman filter recursions
given in the appendix allow time varying parameters. In summary, our feeling
is that smoothing the data optimally under a specific model is to be preferred
to the simpler ad hoc exponential smoothing techniques which might be proposed
for this situation. The difficulty with classical fixed exponential regression models
is that the smoothed values cannot deviate from the pure exponential form. The
estimation and smoothing procedure proposed here adjusts separately to the
data (R) and model (Q) errors as well as the growth rate (d).

In order to apply the EM procedure, initial values are required for the
parameters and these were simply guessed by examining portions of the two
completely observed series. It is a good idea to examine several different sets
of starting values, since the EM algorithm may reach different kinds of stationary
values corresponding, for example, to local rather than global maxima. The
initial values of Q, R,;, and R, were taken to be 10 000 which implies a standard
error of about 100. The inflation rate was assumed to be approximately 10%

TABLE 1II
SUMMARY OF SUCCESSIVE EM ITERATES FOR THE MAXIMUM LIKELIHOOD
ESTIMATORS
Iteration
r w(r) o(r) Q) Ry1(r) R(r) —2logL
1 2500 1.100 10000 10000 10000 885
2 2417 1.114 49 837 41583 24 105 680
3 2396 1.116 78 153 54 666 25486 675
4 2383 1.116 93513 59958 25580 675
5 2374 1.116 100571 62 483 25384 674
10 2342 1.116 105152 65725 23920 674
20 2279 1.116 104 814 67 760 20971 672
40 2277 1.116 105 115 68 636 19394 671
50 2276 1.116 105097 68 663 19 354 671

75 22717 1.116 105115 68 675 19329 671
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per year which implies ¢ =1.10. The result of applying these initial values in
equations (A3)-(A10) are shown as the initial smoothed estimators. The results
of applying equations (9)-(14) are shown in table II, and we note considerable
changes over the first five iterations and then a very slow convergence to the
final values. The last column shows —2 log L as computed using the innovations
form of the likelihood in equation (18). The final estimators reallocate the errors
to the state-space part of the model (where the standard error rises from 100
to 324) and to the observation error in the SSA series (100 to 262). The inflation
rate rises to approximately 12% (¢ = 1.116). The change produces larger uncer-
tainties in the estimated smoothed values produced by the maximum likelihood
estimators as displayed in the last column of table I.

The computations were performed on a TRS-80, Model III microcomputer
with 48K bytes of internal memory and required approximately three minutes
per iteration. A copy of the program, written in Basic, is available from the first
author.

As a final comment, note that equations (A3)-(A7) can be used to produce
forecasts as shown in table IIl. In this case, note the large uncertainties and
generally higher values associated with the forecast function evaluated at the
maximum likelihood estimators.

TABLE III
FIVE-YEAR FORECAST FOR PHYSICIAN EXPENDITURES

Initial MLE

Year X7 VP! X" NI
1977 30330 133 31178 355
1978 33363 177 34 801 512
1979 36 670 219 38 846 657
1980 40369 261 43361 802
1981 44 406 304 48 400 952
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APPENDIX
The Kalman smoother estimator
xt =Ex|y, y2,...,¥0) (A1)
for the model defined by equations (1) and (2) is obtained by minimizing the mean square error
Pl =E[(:—x)x~x)lys, . .o ya] (A2)

and can be calculated recursively using the following equations which are taken from Jazwinski
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(1970), pp. 201, 217. (We allow ®,, R,, and Q; in model (1), (2) to vary with time.) For t=1,...,n

" =dxil] (A3)
Pl = PTid+Q, (A4)
K, =P 'M!(MP. M, +R,)™ (AS5)
xt=xT H Ky, - MxlTh) (A6)
Pi=pP —KMP! (A7)

where we take xg =p and Pg = 3. In order to calculate x; and P{ one performs the set of backward
recursions t =n, n —1,..., 1 on the equations

Joi=PZi 0P (A8)
xiy =xT (e — D xiT (A9)
Py =Pl +J (PP PV (A10)

We note that equation (10) in the text requires the covariance Py,.; which can be calculated
using the backward recursions

Py =Pl 41,1 (Pl —®.PIZI (o (A11)
fort=n,n—1,...,2 where
P .1 =(I-K,M,)d.Pr}. (A12)

The derivation of these relations is somewhat lengthy and can be found in Shumway and
Stoffer (1981).
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