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Statistical discrimination for nonstationary random processes is important in many applications. Our goal was to develop a discriminant
scheme that can extract local features of the time series, is consistent, and is computationally efficient. Here, we propose a discriminant
scheme based on the SLEX (smooth localized complex exponential) library. The SLEX library forms a collection of Fourier-type bases
that are simultaneously orthogonal and localized in both time and frequency domains. Thus, the SLEX library has the ability to extract
local spectral features of the time series. The first step in our procedure, which is the feature extraction step based on work by Saito, is to
find a basis from the SLEX library that can best illuminate the difference between two or more classes of time series. In the next step, we
construct a discriminant criterion that is related to the Kullback–Leibler divergence between the SLEX spectra of the different classes. The
discrimination criterion is based on estimates of the SLEX spectra that are computed using the SLEX basis selected in the feature extraction
step. We show that the discrimination method is consistent and demonstrate via finite sample simulation studies that our proposed method
performs well. Finally, we apply our method to a seismic waves dataset with the primary purpose of classifying the origin of an unknown
seismic recording as either an earthquake or an explosion.
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1. INTRODUCTION

The extension of classical pattern-recognition techniques to
experimental time series is a problem of great practical inter-
est. A series of observations indexed in time often produces a
pattern that may form a basis for discriminating between dif-
ferent classes of events. As an example, Figure 1 shows re-
gional (100–2,000 km) recordings of a typical Scandinavian
earthquake, a mining explosion, and an event of unknown origin
measured by stations in Scandinavia. The unknown event took
place near the Russian nuclear test facility in Novaya Zemlya.
The problem of discriminating between mining explosions
and earthquakes is a reasonable proxy for the problem of
discriminating between nuclear explosions and earthquakes.
This latter problem is of critical importance for monitoring
a comprehensive test-ban treaty. An extensive discussion of
this problem can be found in Shumway and Stoffer (2000),
chapter 5; the data are available on the website for the text,
http://www.stat.pitt.edu/stoffer/tsa.html and its mirrors. Time
series classification problems are not restricted to geophysical
applications, but occur under many and varied circumstances
in other fields. Traditionally, detecting a signal embedded in a
noise series has been analyzed in the engineering literature by
statistical pattern recognition techniques.

The historical approaches to the problem of discriminating
among different classes of time series can be divided into two
distinct categories. The optimality approach, as found in the
engineering and statistics literature, makes specific Gaussian
assumptions about the probability density functions of the sep-
arate groups and then develops solutions that satisfy well-
defined minimum error criteria. Typically, in the time series
case, we might assume the difference between classes is ex-
pressed through differences in the theoretical mean and co-
variance functions, and use likelihood methods to develop an
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optimal classification function. A second class of techniques,
which might be described as a feature extraction approach, pro-
ceeds more heuristically by looking at quantities that tend to be
good visual discriminators for well-separated populations and
have some basis in physical theory or intuition. Less attention is
paid to finding functions that are approximations to some well-
defined optimality criterion.

When analyzing time series data, both time domain and fre-
quency domain approaches are typically available; this is true in
the case of discrimination and classification. For relatively short
stationary series, a time domain approach that follows conven-
tional multivariate discriminant analysis is viable; an example is
given in Shumway and Stoffer (2000), example 5.11. For longer
stationary time series, a frequency domain approach is compu-
tationally easier because it reduces the dimension of the prob-
lem. For nonstationary time series, the reduction in dimension
is essential for computational efficiency.

There has been extensive research on the discrimination
problem of stationary time series. For example, Shumway
(1982) reviewed many different discriminant methods for
time series, including time domain and frequency domain ap-
proaches. Kakizawa, Shumway, and Taniguchi (1998) proposed
the method of discrimination for multivariate time series by us-
ing the Kullback–Leibler discrimination information and the
Chernoff information measure. Pulli (1996) considered using
the ratio of spectra to process the discriminant problem between
earthquakes and explosions. These methods are developed for
stationary time series. A discussion of the current state of the
art for stationary series can be found in Shumway and Stoffer
(2000), section 5.7.

In many practical problems, however, the time series are re-
alizations of nonstationary random processes. For example, it
is clear that the seismic waves displayed in Figure 1 have vari-
ance and spectrum that change over time. Various models of
nonstationary random processes have been proposed in the lit-
erature. Priestley (1965) was the first to introduce the concept
of a Cramér representation with time-varying transfer function.
This idea was later refined by Dahlhaus (1997), who established
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Figure 1. Example of Seismic Recordings.

an asymptotic framework for locally stationary processes. Re-
cently, Ombao, Raz, von Sachs, and Guo (2002) introduced
the SLEX (smooth localized complex exponentials) model of
a nonstationary random process. The SLEX model uses the
SLEX vectors (orthogonal and localized Fourier vectors) as sto-
chastic building blocks in the Cramér representation.

Sakiyama and Taniguchi (2003) and Shumway (2003) dis-
cussed discrimination for Dahlhaus locally stationary time
series. We approach the problem of discrimination and classifi-
cation of nonstationary time series using the SLEX model. One
very important consideration in using the SLEX library is that
it employs computationally efficient algorithms. In particular, it
uses the fast Fourier transform algorithm to compute the SLEX
transform and the best basis algorithm (BBA) of Coifman and
Wickerhauser (1992) to search for the best basis for discrimi-
nation between classes.

Our discriminant scheme contains two parts: a feature extrac-
tion part and a classification part. The feature extraction step
consists of selecting a basis from the SLEX library that illumi-
nates the most differences between the groups. We follow Saito
(1994), who proposed a criterion that is based on the Kullback–
Leibler divergence. This method is aimed at selecting the basis
from any library of orthogonal bases that can best present the
time series as clouds in space with maximal distance (distance
is between the normalized time-varying spectrum). Because the
SLEX functions are local, they are able to extract local spectral
features of the time series. After selecting a basis using training
datasets, we compute the SLEX periodogram of the time series
that we need to classify. We propose a classification criterion
which we show to be asymptotically consistent. The essential
idea is that an observed time series is assigned to a class (popu-
lation or group) �c if the Kullback–Leibler divergence between
the estimated spectrum (SLEX periodogram computed from the
data) and the spectrum of �c is smaller than that between the
estimated spectrum and the spectra of any other class.

In the next section we present our procedure for selecting
the best local discriminant basis from the SLEX library. In Sec-

tion 3, we discuss our discriminant criterion. Finally, in Sec-
tion 4, we present some simulation studies and an analysis of
seismic recordings.

2. SELECTING THE BEST LOCAL DISCRIMINANT
BASIS FROM THE SLEX LIBRARY

The first step in our proposed method is to choose a basis
from the SLEX library, which is a collection of bases; each
basis consists of orthogonal and localized basis vectors. The
SLEX vector is a time and frequency localized orthogonal gen-
eralization of the Fourier (complex exponential) basis vectors.
It is ideal for analyzing nonstationary time series. Ombao, Raz,
von Sachs, and Mallow (2001) used the SLEX to estimate the
spectral density matrix of a bivariate nonstationary time series.
Moreover, Ombao et al. (2002) introduced a model of a non-
stationary random process that has a spectral representation in
terms of the SLEX. The SLEX library is a rich collection of lo-
calized bases. Thus it is able to extract local spectral features of
the time series and is well suited to the problem of discrimina-
tion and classification of nonstationary time series.

2.1 The SLEX Basis Vectors

Here, we give a brief overview of the SLEX transform. For
details, we refer the reader to Ombao et al. (2001) for specific
applications to time series and to Wickerhauser (1994) for a
broader discussion on local trigonometric transforms.

Fourier basis vectors are perfectly localized in frequency and
hence are ideal for representing stationary time series. How-
ever, they cannot adequately represent nonstationary time se-
ries, that is, the time series with spectra that change over time.
In this article, we will use the SLEX basis vectors, which are
simultaneously orthogonal and localized in time and frequency.
They are constructed by applying a projection operator on the
Fourier vectors. It turns out that the action of a projection opera-
tor on any periodic vector is identical to applying two specially
constructed smooth windows to the Fourier vectors. A SLEX
basis vector ψS,ω(t) that has support on the discrete time block
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Figure 2. Real and Imaginary Parts of a SLEX Waveform With Sup-
port on Block Indexed by Time t∈ {512, . . . ,1,023} With ε = 32.

S = {α0 − ε + 1, . . . , α1 − ε} and oscillates at frequency ω has
the form

ψS,ω(t) = �S,+(t) exp

(
i2πω

t

|S|
)

+ �S,−(t) exp

(
−i2πω

t

|S|
)

, (2.1)

where ω ∈ [−1/2,1/2], |S| = α1 − α0, and ε is a small overlap
between two consecutive time blocks (the size of ε is given
in Sec. 2.2). The windows �S,+(t) and �S,−(t) are the two
particularly constructed smooth windows, which take the form

�S,+(t) = r2
(

t − α0

ε

)
r2

(
α1 − t

ε

)
, (2.2)

�S,−(t) = r

(
t − α0

ε

)
r

(
α0 − t

ε

)

− r

(
t − α1

ε

)
r

(
α1 − t

ε

)
, (2.3)

where r(·) is called a rising cut-off function. In our implemen-
tation, we use the sine rising cut-off function

r(u) = sin

(
π

4
(1 + u)

)
, where u ∈ [−1,1]. (2.4)

Other types of rising cut-off functions may be used. See
Wickerhauser (1994) for details.

The SLEX basis vectors are defined at dyadic blocks that
overlap. One important property of the SLEX vectors is that
they remain orthogonal despite the overlap. Moreover, in our
implementation, we use the fundamental frequencies ωk =
k/|S|, k = −|S|/2 + 1, . . . , |S|/2, where |S| is the length of
time block S. An example of a SLEX basis vector is given in
Figure 2.

Figure 3. The SLEX Library Constructed With Level J = 2. The
shaded blocks S(1, 0) ∪ S(2, 2) ∪ S(2, 3) represent one basis (out of
the five in this library).

2.2 The SLEX Library

The SLEX library is a collection of bases, each having or-
thogonal vectors with time support that is obtained by seg-
menting the time series, of length T , in a dyadic manner.
The library is constructed by first specifying the finest reso-
lution level J (smallest time block has length T/2J ). At reso-
lution level j (where j = 0, . . . , J ), the time series is divided
into 2j overlapping blocks. The amount of overlap is set to
ε = T/2J+1, which is the same for all levels j . We denote the
block b on level j to be S(j, b) and Mj = T/2j . The SLEX
vectors on block S(j, b) are allowed to oscillate at different
fundamental frequencies ωk = k/Mj (where k = −Mj/2 +
1, . . . ,Mj /2).

To illustrate this further, consider the bottom of Figure 3,
where the SLEX library is constructed by setting J = 2. In this
example, the SLEX library consists of five orthogonal bases and
we enumerate the support of these basis vectors: (1) S(0,0);
(2) S(1,0) ∪ S(1,1); (3) S(2,0) ∪ S(2,1) ∪ S(2,2) ∪ S(2,3);
(4) S(1,0) ∪ S(2,2) ∪ S(2,3); (5) S(2,0) ∪ S(2,1) ∪ S(1,1).
Clearly, the SLEX basis vectors are allowed to have different
lengths of support (or different time and frequency resolutions).
Moreover, each basis captures local spectral features of the time
series that are useful for discrimination and classification. In the
latter part of this section, we discuss our criterion for selecting
a basis from the SLEX library.

2.3 The SLEX Coefficients and Periodograms

The SLEX transform consists of the set of coefficients that
correspond to all the SLEX vectors defined in the library. The
SLEX coefficients on block S = S(j, b) are defined by

θ̂S,k = 1√
Mj

∑
t

Xt,T ψS,ωk (t), (2.5)

where the fundamental frequency is ωk = k/Mj and k =
−Mj/2 + 1, . . . ,Mj/2.

The SLEX periodogram, an analog of the Fourier peri-
odogram, is defined to be

α̂S,k = |θ̂S,k|2. (2.6)

2.4 The Discriminant Criterion

We use the best local discriminant criterion that was de-
scribed by Saito (1994) as a criterion for selecting the best ba-
sis. In the actual search over the SLEX library, we can employ
either the algorithm used by Saito or the BBA of Coifman and
Wickerhauser (1992). Both of these are computationally effi-
cient algorithms, each of order O(T ).

Intuitively, a best basis for discrimination is that which gives
the largest “disparity” between two or more different classes.
One well-known measure of disparity is relative entropy (also
known as cross-entropy, Kullback–Leibler divergence, or I di-
vergence), which we now define. Let p = {pi}ni=1 and q =
{qi}ni=1 be two nonnegative sequences that satisfy

∑
i pi =∑

i qi = 1. The relative entropy between p and q is defined
to be

I (p,q) =
n∑

i=1

pi log
pi

qi

.
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By convention, we define log 0 = −∞, log(x/0) = +∞ for
x > 0, and 0×(±∞) = 0. Relative entropy satisfies I (p,q) ≥ 0
and the equality holds if and only if p ≡ q. This quantity is not
a metric because it is not commutative and does not satisfy the
triangle inequality. However, it measures the discrepancy of p
from q. Moreover, relative entropy, an additive measure in the
sense that I (p,q) = ∑n

i=1 I (pi, qi), enables us to use this di-
vergence measure in the best basis algorithm. For C ≥ 2 classes
of time series, we define

I (p1, . . . ,pC) =
C−1∑
	=1

C∑
k=	+1

I (p	,pk).

Now, let {xc
i }Nc

i=1 be a set of Nc training signals belonging to
class c, for c = 1, . . . ,C. Then the time–frequency energy map
of class c, denoted by 
c, is a table of real values specified by
the triplet (j, b, k) as


c(j, b, k) ≡
Nc∑
i=1

α̂ i
(j,b),k

/
Nc∑
i=1

‖xc
i ‖2, (2.7)

where α̂ i
(j,b),k is the periodogram of the ith time series com-

puted at level j = 0, . . . , J in block b = 0, . . . ,2j − 1, and fre-
quency ωk , where k = −Mj/2 + 1, . . . ,Mj /2. Note that the
time–frequency energy map for a class c is in fact average “nor-
malized” periodograms, that is, for any basis BT in each class c,∑

(j,b,k)∈BT

c(j, b, k) = 1. The time–frequency energy map

gives the “location” (in time and frequency) where the energy
in a particular class is mostly concentrated. Thus, our proce-
dure for classification is based on the time–frequency energy
concentration of the signals.

After computing the time–frequency energy map of each
class, we then calculate the divergence between the C signals
at block S(j, b) as

�j,b =
Mj /2∑

k=−Mj /2+1

I [
1(j, b, k), . . . ,
C(j, b, k)].

In this case, �j,b gives a “local” measure of disparity between
the time–frequency energy maps of the C classes in each time
block S(j, b). Our procedure selects the basis that consists of
blocks S(j, b), where, essentially, the distance between classes,
�j,b , is maximized.

2.5 The Algorithm for Selecting the Best Basis

In this section, we give the specific steps for selecting the
best basis. Saito (1994) developed the local discriminant basis
algorithm (LDBA), which we apply to the SLEX library. Let
Aj,b represent the best basis (maximizer of the local discrimi-
nant criterion) and let Bj,b denote the SLEX vectors at level j

in block b. The algorithm for selecting the best basis is as fol-
lows:

Step 0. Specify the maximum depth of decomposition J .

Step 1. Construct time–frequency energy maps 
c for c =
1, . . . ,C.

Step 2. Set AJ,b = BJ,b . Determine the Aj,b for b =
0, . . . ,2j − 1 and j = J − 1, . . . ,0 by the following rule:

If �j,b ≥ �j+1,2b + �j+1,2b+1, then Aj,b = Bj,b ,
else Aj,b = Aj+1,2b ⊕ Aj+1,2b+1 and set �j,b =
�j+1,2b + �j+1,2b+1.

Step 3. Extract the blocks S(j∗, b∗) that are defined by
A(j, b) in the previous step. The SLEX periodograms com-
puted at the blocks defined by the best basis will be used to
construct the classification rule.

The algorithm essentially compares a “parent” block against
its “children” blocks; for example, the parent block S(j, b) ver-
sus its children blocks S(j + 1,2b) ∪ S(j + 1,2b + 1). If the
value of the local discriminant criterion at the parent block is
smaller than the corresponding sum at the children blocks, then
the children blocks separate the populations better than the par-
ent block. Thus the children blocks are chosen in favor of their
parent in the best basis BT . If the value of the local discriminant
criterion at the parent block is greater than or equal to the cor-
responding sum at the children blocks, then the children blocks
do not separate the populations better than the parent block, and
the parent block would be selected in favor of its children.

Finally, we point out the connection between LDBA and the
BBA. The basis that maximizes the I divergence is equivalent
to the basis that minimizes the negative I divergence. One may
use the BBA to search for the best local discriminant basis in the
SLEX library. Thus, our procedure is computationally efficient
and can handle massive time series datasets.

2.6 The SLEX Model

We now describe the SLEX model for a nonstationary time
series Xt,T for t = 0, . . . , T − 1. Let BT be the best local dis-
criminant basis selected from the SLEX library and let

⋃
Si be

the blocks in BT . Note that
⋃

Si is a particular dyadic seg-
mentation of the time series. Define Mi to be the number of
points on the block Si . Let JT be the highest time resolu-
tion level in BT , that is, the smallest time block in BT has
length T/2JT . The frequencies defined on Si are the grid fre-
quencies ωki = ki/Mi for ki = −Mi/2 + 1, . . . ,Mi/2. The
spectral representation of Xt,T is

Xt,T =
∑

⋃
Si∼BT

1√
Mi

Mi/2∑
k=−Mi/2+1

θi,k,T ψi,k(t)zi,k, (2.8)

where θi,k,T is the transfer function on time block Si and
frequency k; ψi,k is the SLEX basis vector oscillating at fre-
quency k and having support at block Si ; and zi,k is an ortho-
normal random process with finite fourth moment.

2.6.1 The SLEX Spectrum. The SLEX spectrum is defined
analogously to the spectrum of a stationary process. It is the
square of the modulus of the time-varying transfer function.
It is defined on rescaled time [0,1]. Let u be in an interval
I ⊂ [0,1] such that [uT ] is in some time block Si on BT . The
SLEX spectrum is fT (u,ωk) = |θi,k,T |2 ⇐⇒ [uT ] ∈ Si . Note
that for a fixed frequency ωk , fT (u,ωk) is constant within each
time subinterval (or block). This is because for each fixed T ,
the SLEX model gives an explicit partitioning of the time–
frequency plane as determined by the blocks

⋃
i Si in the ba-

sis BT .
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Ombao et al. (2002) developed asymptotic theory on the
SLEX model. In this article, we discuss only the ideas that
are essential in proving the consistency of our discrimination
procedure. As T → ∞, fT (u,ωk) approaches the “limiting
spectrum” f (u,ω), which is independent of T . The limiting
log-spectrum is defined subsequently. As T increases, the num-
ber of observations in each block also increases. However, the
number of blocks in BT should also be allowed to increase if
we want to model a limiting spectrum that, as a function of
time, has an infinite wavelet expansion. Thus, we need to al-
low JT to increase as T increases, but at a rate that is slower
than KT = log2(T ). The infinite wavelet expansion in Ombao
et al. (2002) was defined on logf (u,ω) instead of f (u,ω) to
guarantee positivity of the spectrum. Let the Haar wavelet basis
of L2([0,1]) be {ϕ∗

0,0} ∪ {ϕ	,m}	≥0,m≥0, where ϕ∗ is the “fa-
ther” Haar wavelet and ϕ is the “mother” wavelet. The infinite
wavelet expansion of the log-limiting SLEX spectrum is

logf (u,ω) = lim
T →∞ logfT (u,ω)

= lim
T →∞

(
β−1,0(ω)ϕ∗

0,0(u)

+
JT −1∑
	=0

2	−1∑
m=0

β	,m(ω)ϕ	,m(u)

)
, (2.9)

where the coefficients are

β−1,0(ω) =
∫ 1

0
logf (u,ω)ϕ∗

0,0(u) du,

β	,m(ω) =
∫ 1

0
logf (u,ω)ϕ	,m(u) du.

Ombao et al. (2002) demonstrated that for a given T ,
logf (u,ω), and SLEX basis BT with finest time resolution
level JT , logfT (u,ω) arises as a finite wavelet expansion of
logf (u,ω) truncated to a level JT .

As a final remark, Ombao et al. (2002) showed that the SLEX
model and the Dahlhaus (1997) model of a locally station-
ary process are asymptotically mean-squared equivalent. The
equivalence implies nonstationary processes that have smoothly
time-varying spectrum that can be modeled using the SLEX
model. For example, one may model autoregressive moving av-
erage processes with parameters that vary smoothly over time
by a SLEX model with a spectrum that varies with time but is
piecewise constant within small time blocks.

2.6.2 The Likelihood of the SLEX Periodograms. We now
derive the likelihood of the SLEX periodograms. When the
orthonormal random increment processes, zi,k , are complex
Gaussian, then the SLEX coefficients, θ̂i,k , are independent
complex Gaussian. Moreover, the SLEX periodograms α̂i,k =
|θ̂i,k|2 are distributed as fT (ui,ωk)Vi,k , where Vi,k are inde-
pendent over i and k ≥ 0 and are distributed as χ2

2 /2 when
k �= 0,Mi/2, and χ2

1 when k = 0,Mi/2. Because the peri-
odograms at each level j and block b are symmetric about the
zero frequency (k = 0), we consider only the periodograms at
nonnegative frequencies.

Denote α̂ = {̂αi,k}. Let p(̂α) be the joint density of the peri-
odograms under the SLEX process � and let fT be the spec-

trum. Then the log-likelihood of the periodograms is

	(fT |̂α)

= −
∑

⋃
Si∼BT

Mi/2∑
k=0

{
logfT (ui,ωk) + α̂i,k

fT (ui,ωk)

}
. (2.10)

In the next section, we develop a classification rule that is based
on the log-likelihood ratio.

3. THE CLASSIFICATION RULE

Let x = {x0, . . . , xT −1} be a time series that we wish to clas-
sify as a realization of either �1 or �2 with time-varying spec-
tra f 1

T or f 2
T , respectively. We consider only the case where

there are C = 2 classes of time series, although our method
is applicable for C > 2. Our classification criterion is based
on a frequency domain approach, that is, we use the spectrum
as the basic signature for classifying time series. We extract
the SLEX periodograms computed from the blocks in the ba-
sis selected in the feature extraction step. In this section, we
derive our criterion using both the log-likelihood ratio and the
Kullback–Leibler divergence. We then show that this criterion
is consistent, that is, the probability of incorrectly classifying a
time series goes to zero as the length of the time series T → ∞.

3.1 Classification Rule as Log-Likelihood Ratio

The basic idea of our approach is as follows. We first ex-
tract the SLEX periodograms, which we denote as α̂(x), from
the blocks of the best basis selected. We then form the like-
lihood under �1 and �2, denoted as p1 [̂α(x)] and p2 [̂α(x)],
respectively. Our rule is to classify the time series x into �1 if
p1 [̂α(x)] ≥ p2 [̂α(x)]. In terms of the log-likelihood ratio, the
discriminant statistic is

DT (f 1
T , f 2

T ; x) = 1

T
log

p1 [̂α(x)]
p2 [̂α(x)] (3.1)

and the classification rule is to assign x as a realization of �1
if D ≥ 0. Otherwise, it is assigned to �2.

In this section, we derive the discrimination statistic (log-
likelihood ratio) and then show that this criterion is consistent,
that is, the probability of incorrectly classifying a time series
goes to zero as the length of the time series T → ∞.

3.1.1 The SLEX Likelihood Ratio. Denote α̂ = {̂αi,k}. Let
p1(̂α) and p2(̂α) be the density under processes �1 and �2,
respectively, and let f 1

T and f 2
T be the spectra under these two

processes. Then the log-likelihoods under these two densities
are, respectively,

	(f 1
T |̂α)

= −
∑

⋃
Si∼BT

Mi/2∑
k=0

{
logf 1

T (ui,ωk) + α̂i,k

f 1
T (ui,ωk)

}
(3.2)

and

	(f 2
T |̂α)

= −
∑

⋃
Si∼BT

Mi/2∑
k=0

{
logf 2

T (ui,ωk) + α̂i,k

f 2
T (ui,ωk)

}
. (3.3)

Our classification rule is based on the likelihood ratio, that
is, we classify x into �1 if 	(f 1

T |̂α) ≥ 	(f 2
T |̂α); otherwise, it is

classified into �2. Following (3.1)–(3.3), the discriminant sta-
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tistic is

DT (f 1
T , f 2

T ; x) = 1

T

∑
⋃

i Si∼BT

Mi/2∑
k=−Mi/2+1

{
log

f 2
T (ui ,ωk)

f 1
T (ui ,ωk)

+ α̂i,k

[
1

f 2
T (ui ,ωk)

− 1

f 1
T (ui,ωk)

]}
. (3.4)

We classify x into �1 if DT (f 1
T , f 2

T ; x) ≥ 0.

Remark 1. First, we note that DT (f 1
T , f 2

T ; x) ≈ 2
T

[	(f 1
T |̂α)−

	(f 2
T |̂α)]. In the computation of the log-likelihood, we do not

explicitly include the negative frequencies, because the peri-
odograms are symmetric about k = 0.

Remark 2. To simplify the computation of the log-likelihood
	(f 1

T ) and 	(f 2
T ), we ignored the fact that the distribution of

α̂i,k/fT (ui,ωk) at k = 0 and Mi/2 is χ2
1 , whereas for k =

1, . . . ,Mi/2−1, the ratio is χ2
2 /2. However, for Mi sufficiently

large, we expect the difference to be practically negligible.

Remark 3. The derivation of DT (f 1
T , f 2

T ; x) in the SLEX
approach is inspired by the work of Sakiyama and Taniguchi
(2003), who derived a discriminant statistic for the Dahlhaus
(1997) model of a locally stationary random process. Denote
the spectrum for the Dahlhaus model as fD(u,ω). The like-
lihood is obtained by segmenting the time series into N time
blocks, each having length M , and then computing the Fourier
periodograms PM(b,ω), at blocks b = 1, . . . ,N . Their classifi-
cation criterion is

D∗
T (f 1, f 2; x)

= 1

N

N∑
j=1

∫ 1/2

−1/2
log

f 2
D(uj ,ω)

f 1
D(uj ,ω)

+ PM(uj ,ω)

[
1

f 2
D(uj ,ω)

− 1

f 1
D(uj ,ω)

]
dω, (3.5)

which is comparable to (3.4).

Remark 4. In practice, the true spectra, f 1
T and f 2

T , are
unknown. We replace these quantities in DT by the SLEX
periodograms that are averaged across time series replicates.
Suppose that there are N	 independent time series from class
�	 for 	 = 1,2. Denote the periodograms computed from the
mth time series in the training dataset from class �	 to be α̂

	,m
i,k .

Then the estimate of f 	
T (ui,ωk) is

f̂ 	
T (ui ,ωk) = 1

N	

N	∑
m=1

α̂
	,m
i,k , 	 = 1,2. (3.6)

Essentially, we perform averaging across subjects, which gives
the similar desired effect of reducing the variance when
smoothing over frequency. However, if N1 is small, we might
not achieve the desired reduction in the variance and thus we
may need to do an extra smoothing step, which is over fre-
quency. Hence, we may use the weighted form

f̃ 	
T (ui ,ωk) =

M∑
s=−M

Wsf̂
	
T (ui ,ωk−s),

where the 2M + 1 is the span of the weights, Ws ≥ 0, and∑M
s=−M Ws = 1. The estimate f̃ 2

T (ui,ωk) can be obtained in
a similar manner if N2 is small.

3.2 The Classification Rule as
Kullback–Leibler Divergence

The discriminant statistic, DT given in (3.4), can be de-
rived using the Kullback–Leibler divergence. As before, let
f 1

T and f 2
T represent the spectra of �1 and �2, respectively. Let

the periodogram of the time series x, to be classified into either
�1 and �2, be denoted by α̂ = {̂αi,k}. The Kullback–Leibler
divergences between α̂ and f 1

T and f 2
T are

KL(̂α, f 1
T ) = 1

T

∑
⋃

i Si∼BT

Mi/2∑
k=−Mi/2+1

{
− log

α̂i,k

f 1
T (ui,ωk)

+ α̂i,k

[
1

f 1
T (ui ,ωk)

− 1

α̂i,k

]}

and

KL(̂α, f 2
T ) = 1

T

∑
⋃

i Si∼BT

Mi/2∑
k=−Mi/2+1

{
− log

α̂i,k

f 2
T (ui,ωk)

+ α̂i,k

[
1

f 2
T (ui ,ωk)

− 1

α̂i,k

]}
.

We classify the series x into �1 if its periodogram α̂ is “closer”
to f 1

T than f 2
T ; that is, if KL(̂α, f 1

T ) ≤ KL(̂α, f 2
T ) or if

DT (f 1
T , f 2

T ; x) = KL(̂α, f 2
T ) − KL(̂α, f 1

T ) ≥ 0.

This leads to the same classification rule discussed in Sec-
tion 3.1.1 following (3.4), namely classify x into �1 if DT ≥ 0;
otherwise, classify x into �2.

3.3 Consistency Theorem

We now state the results pertinent to the consistency of
our classification scheme based on the SLEX model. Denote
the probability of misclassifying a time series x to process
�2, given that the true process is �1, to be PT (2|1) =
P {DT (f 1

T , f 2
T ; x) < 0|�1}. Similarly, we denote PT (1|2) =

P {DT (f 1
T , f 2

T ; x) ≥ 0|�2}. Then, under appropriate condi-
tions,

lim
T →∞ PT (2|1) = 0, (3.7)

lim
T →∞ PT (1|2) = 0. (3.8)

Moreover, (3.7) and (3.8) hold when f 1
T and f 2

T are replaced
by the consistent estimates defined in (3.6) if, in addition, we
have N	 → ∞ for 	 = 1,2. The conditions and proofs of these
results are given in Appendix B.

4. SIMULATION RESULTS AND DATA ANALYSIS

4.1 Simulation Results

A number of numerical experiments were performed to test
how well our proposed method was able to classify time series.
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Table 1. Misclassification Rate for the First Simulation Study Where Π1
Is Gaussian White Noise and Π2 Is AR(1) With Parameter φ

φ −.5 −.3 −.1 .1 .3 .5
Error rate .00 .00 .02 .02 .00 .00

We discuss a few of simulation experiments here. In the first
experiment we had two classes, where processes from �1 were
Gaussian white noise and processes from �2 were stationary
first-order autoregressive with parameter φ. The length of each
time series was set to T = 1,024 and the training set for each
group consisted of eight time series. Several simulation studies
were performed by varying φ. Using the training datasets, we
selected the best local discriminant basis and then set up the dis-
criminant criterion. We then generated 50 time series datasets
from each of �1 and �2. In Table 1 we report the error rate,
which is the number of incorrect classifications out of a total of
100 trials. Note that there is a small misclassification rate when
the value of φ is close to 0. For example, when φ = ±.1, there
is some misclassification error because these AR(1) processes
are close to white noise.

In the second experiment, processes from �1 were defined
by

Yt =
{

Y
(1)
t if 1 ≤ t ≤ T/2

Y
(2)
t if T/2 + 1 ≤ t ≤ T ,

(4.1)

where Y
(1)
t is white noise and Y

(2)
t is AR(1) with parameter

φ = .1. The processes from �2 were defined by

Xt =
{

X
(1)
t if 1 ≤ t ≤ T/2

X
(2)
t if T/2 + 1 ≤ t ≤ T ,

(4.2)

where X
(1)
t is white noise and X

(2)
t is AR(1) with parameter

φ = −.1. We generated N = 8,16 training datasets from each
group, �1 and �2, with T = 512,1,024,2,048. In each case
we generated 50 time series datasets from �1 and another 50
from �2. The misclassification rates are displayed in Table 2,
and again we note the favorable results.

In the third experiment, the processes from �1 and �2

were slowly time-varying AR(2) processes. The processes
from �1 were generated as Yt = at;τYt−1 − .81Yt−2 + εt ,
t = 1, . . . ,1,024, where at;τ = .8[1−τ cos(πt/1,024)], τ = .5,
and εt were iid standard normal. We performed three subexper-
iments, where �2 was defined by the processes Yt = at;τYt−1 −
.81Yt−2 + εt , t = 1, . . . ,1,024, where τ takes on the three dif-
ferent values τ = .4, .3, .2. The plots of at;τ for the various
values of τ are shown in Figure 4. A simulated dataset from
process �1 is shown in Figure 5 and that from �2 with τ = .3
is shown in Figure 6.

Table 2. Misclassification Rate for the Second Simulation Study
Where Π1 Is (4.1) and Π2 Is (4.2)

T 512 512 1,024 1,024 2,048 2,048
N 8 16 8 16 8 16
Error rate .06 .05 .03 .00 .00 .00

Figure 4. The Coefficient at;τ versus t for τ = .5 ( ), τ = .4 ( ),
τ = .3 ( ), and τ = .2 ( ).

Figure 5. A Simulated Slowly Changing AR(2) Dataset From Π1.

Figure 6. A Simulated Slowly Changing AR(2) Dataset From Π2 With
τ = .3.
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Table 3. The Simulation Results for the Slowly Varying
AR(2) Experiment

τ .4 .3 .2
Error rate .08 .00 .00

We generated 10 datasets from each of �1 and �2 as the
training data. From the training dataset, we obtained the best
basis and the estimated spectra. Then we generated 10 new data
for each category to evaluate the error rate. The simulation re-
sults are shown in Table 3. We can see that the error rates are
zero when the τ = .3, .2 in �2. There was a misclassification
error for the case where the τ ’s are close for both processes,
that is, τ = .4 for �2 and τ = .5 for �1.

4.2 Data Analysis

As discussed in the Introduction, discriminating between
nuclear explosions and earthquakes is a problem of critical im-
portance for monitoring a comprehensive test-ban treaty. We
apply the proposed SLEX methodology to construct the dis-
criminant rule for classifying a time series as either an ex-
plosion or an earthquake. Because the proliferation of nuclear
explosions is monitored in regional distances (100–2,000 km)
nowadays, the data on mining explosions can serve as a rea-
sonable proxy. A dataset constructed by Blandford (1993) that

comprises regional (100–2,000 km) recordings of several typi-
cal Scandinavian earthquakes and mining explosions measured
by stations in Scandinavia are used in this study. A list of these
events (eight earthquakes and eight explosions) and an extra
event of uncertain origin that was located in the Novaya Zemlya
region of Russia (called the NZ event) were given by Kakizawa
et al. (1998). The problem was discussed in detail by Shumway
and Stoffer (2000, chap. 5) and the data are availiable online
from the website of the text (the URL is given in the Intro-
duction). The earthquake and explosion seismic recordings are
given in Figures 7 and 8, respectively. The SLEX spectral es-
timates for one earthquake and one explosion time series are
given in Figures 9 and 10, respectively, whereas the SLEX spec-
tral estimate of the NZ event is given in Figure 11.

To evaluate our method, we used the holdout procedure; that
is, we removed one time series (at a time) to be used for clas-
sification and used all the remaining time series in the train-
ing dataset (excluding the unknown NZ event) to construct the
classification rule. For each holdout time series, we performed
the following steps in sequence: We selected a basis for dis-
crimination, we extracted the SLEX periodograms computed
at the blocks in this basis, we constructed the classification
rule, and, finally, we assigned the holdout time series. We re-
peated the process for each of the holdout time series. In the

Figure 7. Seismic Recordings of Earthquake Origin.
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Figure 8. Seismic Recordings of Explosion Origin.

classification criterion, we estimated the spectra for each group
by first averaging the SLEX periodograms across subjects and
then smoothing the averaged SLEX periodograms across fre-
quency. Denote the estimated spectra for the earthquake and

Figure 9. The SLEX Spectral Estimate of an Earthquake Time Se-
ries.

the explosion classes to be, respectively, f̃ 1
T and f̃ 2

T . The clas-

sification criterion was DT (f̃ 1
T , f̃ 2

T ; x) and the testing data was

classified as an earthquake event if DT (f̃ 1
T , f̃ 2

T ; x) ≥ 0 and as

an explosion if DT (f̃ 1
T , f̃ 2

T ; x) < 0. The results are reported in

Figure 10. The SLEX Spectral Estimate of an Explosion Time Series.
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Figure 11. The SLEX Spectral Estimate of the NZ Event.

Table 4, where we denote Eqk to be the kth earthquake in the
dataset and Expk to be the kth explosion in the dataset. The
proposed method had a zero misclassification rate. Moreover,
the unknown NZ event here is classified as an explosion, which
agrees with the result in Kakizawa et al. (1998).

5. CONCLUSION

In this article, we proposed the SLEX method for discrimina-
tion and classification of nonstationary time series that is based
on the SLEX transform. The SLEX transform is localized in
both time and frequency domains; thus our method is able to
extract local features of the data. Moreover, our method is com-
putationally efficient and hence is able to handle large datasets.
Our procedure computes the Kullback–Leibler distance of the
time–frequency energy maps (normalized SLEX periodograms
or the estimated normalized spectrum) of the classes and selects
the basis from the SLEX library that can best discriminate be-
tween classes of nonstationary time series. Our classification
rule, which is based on the Kullback–Leibler distance between
the estimated spectra of the groups and the time series that
needs to be classified, is shown to be consistent; that is, the
probability of misclassification goes to zero as the length of
the time series goes to infinity. Finite sample simulation studies
and data analysis demonstrate that the method performs well in
practice.

Table 4. Result of Holdout Procedure for Classifying
Seismic Recordings

Holdout series DT( f̃1T, f̃ 2
T ; x) Holdout series DT( f̃1T, f̃ 2

T ; x)

Eq1 .1526 Exp1 −.5096
Eq2 .6271 Exp2 −18.6391
Eq3 .8132 Exp3 −1.4676
Eq4 .0131 Exp4 −17.5373
Eq5 .5283 Exp5 −12.5065
Eq6 .7189 Exp6 −10.3111
Eq7 .6116 Exp7 −2.1453
Eq8 .6469 Exp8 −.1044

NZ −3.1552

APPENDIX A: ASSUMPTIONS ON THE LIMITING
SPECTRUM OF THE SLEX MODEL

As mentioned in Section 2.6, the existence of the limiting SLEX
spectrum depends on three assumptions, which we state now for com-
pleteness. Details can be found in Ombao et al. (2002).

Assumption 1. For f (u,ω) as a function of ω ∈ [−1/2,1/2], uni-
formly in u ∈ [0,1], we assume a Hölder condition of order µ ∈ (0,1]
with constant L > 0:

|f (u,ω) − f (u,ω∗)| ≤ L|ω − ω∗|µ.

Assumption 2. There exists a hierarchical collection I of dyadic
subintervals of [0,1],

I = {[
2−	m,2−	(m + 1)

)
:	 = 0,1, . . . ; m = 0, . . . ,2	 − 1

}
,

and a subset of intervals, say Iv = [uv,uv+1) ∈ I , such that
⋃

v Iv =
[0,1] and that f (u,ω), as a function of u, is Hölder of order 0 < sv < 1
on Iv for all ω ∈ [−1/2,1/2]. Moreover, the transition points uv be-
tween the intervals Iv−1 and Iv allow for a finite number of possible
jumps of finite height.

Assumption 3. (a) Either the maximum depth J is fixed or, if
J = JT is allowed to grow as a function of T (i.e., JT → ∞), then
we must have 2JT /T → 0 as T → ∞. Furthermore, JT ≤ J2T .

(b) The length Mj of each segment Sj satisfies MJT
/Mj ≤ 1 for

j = 0,1, . . . , JT .

APPENDIX B: PROOF OF CONSISTENCY

In Section 3.3 we claimed that our discrimination rule is consis-
tent in the sense of (3.7) and (3.8). We now prove these results un-
der Assumptions 1–3. First, we state a theorem that relates the SLEX
spectrum, fT to the SLEX limiting spectrm, f (recall Remark 4 in
Sec. 2.6).

Theorem 1 (Ombao et al. 2002). Under Assumptions 1–3, given the
SLEX model as defined in Section 2.6, with SLEX spectrum fT and
SLEX limiting spectrum f , and a sequence of frequencies ωk,T → ω

as T → ∞, we have the following situations:

1. Let u ∈ Iv and let 2JT ∼ T µ/(µ+sv). Then

| log fT (u,ωk,T ) − logf (u,ω)| = O
(
T −svµ/(µ+sv)

)
uniformly in u ∈ Iv .

2. Define s := infv sv and let 2JT ∼ T µ/(µ+sv). Then∣∣∣∣
∫ 1

0

[
logfT (u,ωk,T )− logf (u,ω)

]2
du

∣∣∣∣ = O
(
T −svµ/(µ+sv)

)
.

To aid in the proof of the consistency of our method, we first define
the following functions. Let

φT (u,ω) = 1/f 2
T (u,ω) − 1/f 1

T (u,ω)

and

φ(u,ω) = 1/f 2(u,ω) − 1/f 1(u,ω).

Define

HT (φT ) = 1

T

∑
⋃

i Si∼BT

Mi/2∑
k=−Mi/2+1

φT (ui ,ωk)̂αi,k,

H(φ) =
∫ 1

0

∫ 1/2

−1/2
φ(u,ω)f ∗(u,ω)dω du,

where α̂i,k is the SLEX periodogram of x,
⋃

i Si represents the blocks
corresponding to the best basis BT , and f ∗ is the SLEX limiting spec-
trum that corresponds, generically, to class �∗ (i.e., x ∈ �∗). Simi-
larly, f ∗

T represents the SLEX spectrum that corresponds to �∗. The
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proofs of the following lemmas are brief to save space; explicit details
can be obtained from the authors.

Lemma 1. Under the established notation and conditions,

E∗HT (φT ) = H(φ) + O

([
M

T

]µ)
+ O

([
2JT

T

]µ)
+ O(bs

T ),

where E∗ denotes expection with respect to (wrt) �∗, M := supi Mi ,
bT := MJT

/T , and s := infv sv .

Proof.

E∗HT (φT ) =
∑

⋃
i Si∼BT

Mi

T

1

Mi

Mi/2∑
k=−Mi/2+1

φT (ui ,ωk)f
∗
T (ui ,ωk)

=
∑

⋃
i Si∼BT

Mi

T

1

Mi

Mi/2∑
k=−Mi/2+1

[φ(ui,ωk) + O(bs
T )]

× [f ∗(ui,ωk) + O(bs
T )]

=
∑

⋃
i Si∼BT

Mi

T

[∫ 1/2

−1/2
φ(ui ,ω)f ∗(ui,ω)dω

+ O

([
2JT

T

]µ)
+ O(bs

T )

]

=
∫ 1

0

∫ 1/2

−1/2
φ(u,ω)f ∗(u,ω)dω du

+ O

([
M

T

]µ)
+ O

([
2JT

T

]µ)
+ O(bs

T ).

Lemma 2. Under the established notation and conditions,

Var∗{HT (φT )} = O(T −1) + O

(
bs
T

T

)
+ O

(
2JT

T

)
,

where Var∗ denotes variance wrt �∗.

Proof. Let Pi = ∑Mi/2
k=−Mi/2+1 φT (ui ,ωk)̂αi,k . Then

Var∗{HT (φT )} = Var∗
{

1

T

∑
⋃

i Si∼BT

Mi/2∑
k=−Mi/2+1

φT (ui ,ωk)̂αi,k

}

= 1

T 2

∑
i

Var∗(Pi ) + 1

T 2

∑∑
i �=j

Cov∗(Pi,Pj )

in obvious notation. Using arguments similar to the proof of Lemma 1
and the result of Lemma 1, we can show

1

T 2

∑
i

Var∗{Pi} = O(T −1) + O

(
bs
T

T

)

and

1

T 2

∑∑
i �=j

Cov∗(Pi ,Pj ) = O

(
2JT

T

)
.

Lemma 3. Let DT (f 1
T

,f 2
T

;x) denote the discriminant statistic de-

fined in (3.4), where f 1
T and f 2

T are the SLEX spectra in classes
�1 and �2, respectively. Then under the established notation and con-
ditions, as T → ∞,

DT (f 1
T ,f 2

T ;x) − E
{
DT (f 1

T ,f 2
T ;x)|�i

} p→0 for x ∈ �i, i = 1,2.

Proof. Without loss of generality, we prove the result for x ∈ �1.
Set

RT = 1

T

∑
⋃

i Si∼BT

Mi/2∑
k=−Mi/2+1

log
f 2
T

(ui,ωk)

f 1
T (ui,ωk)

.

Then

DT (f 1
T ,f 2

T ;x) = RT + HT (φT )

and

E
{
DT (f 1

T ,f 2
T ;x)|�1

} = RT + E{HT (φT )|�1}.
Hence,

E
{[

DT (f 1
T ,f 2

T ;x) − E{DT (f 1
T ,f 2

T ;x)}]2∣∣�1
}

= Var{HT (φT )|�1} → 0

as T → ∞ by Lemma 2.
We are now ready to establish the main result on the consistency of

our discrimination rule.

Theorem 2. Under the established notation and conditions,

lim
T →∞PT (2|1) = lim

T →∞P {DT (f 1
T ,f 2

T ;x) < 0|�1} = 0,

lim
T →∞PT (1|2) = lim

T →∞P {DT (f 1
T ,f 2

T ;x) ≥ 0|�2} = 0.

Proof. We prove the first result; the second result follows in a sim-
ilar manner. Using Lemma 1, we have

E
[
DT (f 1

T ,f 2
T ;x)|�1

]

= 1

T

∑
⋃

i Si∼BT

Mi/2∑
k=−Mi/2+1

[
log

f 2
T

(ui,ωk)

f 1
T

(ui,ωk)
+ f 1

T
(ui,ωk)

f 2
T

(ui,ωk)
− 1

]

=
∫ 1

0

∫ 1/2

−1/2

[
log

f 2(u,ω)

f 1(u,ω)
+ f 1(u,ω)

f 2(u,ω)
− 1

]
dωdu

+ O

([
M

T

]µ)
+ O

([
2JT

T

]µ)
+ O

([
MT

T

]s)
.

However,

log
f 2(u,ω)

f 1(u,ω)
+ f 1(u,ω)

f 2(u,ω)
− 1 ≥ 0,

so that

E
[
DT (f 1

T ,f 2
T ;x)|�1

] → C ≥ 0 (A.1)

as T → ∞. In light of (A.1) and Lemma 3, the result follows immedi-
ately.

Corollary. Let f̂ 	
T (ui,ωk) for 	 = 1,2 be the estimates given

in (3.6) and let N = min{N1,N2}. Then, under the established nota-
tion and conditions,

lim
T →∞ lim

N→∞ P
{
DT

(
f̂ 1
T

, f̂ 2
T

;x
)
< 0|�1

} = 0,

lim
T →∞ lim

N→∞ P
{
DT

(
f̂ 1
T

, f̂ 2
T

;x
) ≥ 0|�2

} = 0.

Proof. By the strong law of large numbers, DT (f̂ 1
T

, f̂ 2
T

;x)
as→

DT (f 1
T ,f 2

T ;x) as N → ∞, and the result follows immediately from
Theorem 2.

[Received May 2003. Revised January 2004.]
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