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SUMMARY

We consider the problem of quantifying the degree to which two stationary categorical
time series are coherent. The goal is to discover whether or not the sequences contain
similar patterns. The problem is motivated by the problem of matching two DNA
sequences. Following the ideas used in defining the spectral envelope for a qualitative-
valued time series, the methods we present here focus on the problem of obtaining coher-
ency envelopes for measuring the similarity between two categorical time series. Estimation
is based on the fast Fourier transform so that the methods are computationally simple
and fast, and can be applied to long sequences.
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1. INTRODUCTION

Let X;(t) and X,(¢) (t=0, +£1, +2,...) be stationary categorical time series taking
values in the finite sets & = {c11,..., 14, +1} and FH={cy, ..., Cox,+1}, TESPECtively,
such that

p”=pr{X,(t)=clJ}>0 (j=1,...,ki+1;i=1,2).

The problem we consider is that of quantifying the degree to which the sequences X, ()
and X,(t) match via a measure of coherency. The general problem is motivated by, but
not restricted to, the matching of DNA sequences; for a recent review, see Waterman &
Vingron (1994). The focus is on obtaining computationally fast and simple methods that
can easily be applied to, for example, large genomic sequences. Hence we examine the
problem via nonparametric spectral methods based on the fast Fourier transform. Our
approach builds on the ideas underlying the spectral envelope for categorical time series
as described in Stoffer, Tyler & McDougall (1993).

In particular, let g{X,(t)} and h{X,(t)} be the real-valued time series obtained via
nonconstant transformations g and h of the categorical sequences X, (t) and X,(t), such
that g{X,(t)} has continuous spectral density f,,(w), and h{X,(t)} has continuous spectral
density fi,(w), with f,,(w) being the complex-valued cross-spectral density. A measure of
the degree of similarity between the sequences g{X,(#)} and h{X,(t)} at frequency
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o € (—n, m] is the squared coherency

| fen(@)l?
Soa(@) fun(@)’

The value of K2, (w) will, of course, depend on the choices of the transformations g and
h.If X, (t) and X, (¢) are independent, then so are g{X, (¢)} and h{X,(t)} for any nonconstant
transformations g and h, and hence K2, (w) =0 for any such g and h. Our goal is to find
g and h to maximise, under various constraints, the squared coherency KZ,(w). If the
maximised value of Kﬁh(co) is small we can say that the two sequences X, (t) and X,(t) do
not match at frequency o. If the maximised value of K,(w) is large, then the resulting
transformations g and h can help in understanding the nature of the similarity between
the two sequences. It should be noted that, if g’ and A’ are location and scale changes of
g and h, respectively, then K%, (w) = K2,(w).

We identify the categorical sequences X;(¢) with the k; x 1 point processes Y;(t) defined
by

Kéh(w) =

Y;(t): eij if Xl(t)=CU fOI‘j= 1,...,ki,
0, if X;(t)=cu,+1,

for i=1, 2, where ¢;; is a k; x 1 vector with a one in the jth position and zeros elsewhere,
and 0; is a k; x 1 vector of zeros. Note that there is a one-to-one correspondence between
X;(t) and Y(t), and between X,(t) and Y,(¢). We assume throughout the existence of the
k; x k; (i=1, 2), nonsingular spectral density matrices f;,(w) and f,,(w) of Y;(t) and Y,(¢),
respectively, and denote the k, x k, cross-spectral matrix between Y;(t) and Y,(t) by f1,(w).

2. CANONICAL VARIATE SERIES

Brillinger (1975, Ch. 10) discusses a time series extension of canonical correlation analy-
sis that could be used here as a special case. Briefly, consider real constants y; and k; x 1
linear filters {B;(j)} such that X ||8:(j)|| < oo (i =1, 2). The real-valued univariate series

Zi(O)=m+ ) BE—DH(), ZAt)y=m+ Y Brt—)N())
j=—o0 j=—o
having maximum squared-coherency KZ,(w) at each w subject to b¥(w)f;(w)b;(w) = 1, for
i=1,2, where b;(w) is the Fourier transform of {f;(j)}, and * denotes complex conjugate
transpose, are given by finding the largest scalar A(w) such that, with f,, (@)= f¥(w),

S22(w) _%f 21(@) f11 (@)1 f: 12(®) fo2(w)~ %V((U) = Mw)y(w).

The maximum squared-coherency achieved between Z,(t) and Z,(t) is A(w), and b,(w)
and b,(w) are taken proportional to fy;(w)~1f1,(@)f2(w) *y(w) and f,(w) Fp(w),
respectively.

An interpretation of the maximal squared coherency can be given that is consistent
with the notion of scaling and the spectral envelope established in Stoffer, Tyler &
McDougall (1993). Specifically, we may regard A(w) as a coherency envelope, in' the
following sense. Let b; be complex-valued k; x 1 vectors, i =1, 2, and consider the scaled
complex-valued processes Z,(t, b;)=b}Yi(t) and Z,(t, b,)=b%Y,(t) having squared
coherency K?,(w, b;, b,). If we find b, and b, so that the squared coherency between
Z,(t, by) and Z,(t, b,) is maximised at a particular frequency o = w,, then the maximum
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squared coherency at frequency w, 1s A(w,), and the complex-valued scalings for which
the maximum squared coherency is achieved are proportional to

by (o) = f11(®o)~ 1f12(wo)f22(w0)_%y(wo), b, (wo) = fzz(wo)_%y(a)o)-

Thus, for any nonzero complex vectors b; and b,, K3,(w, b;, b,) < A(w), with equality
when b, is proportional to b;(w) and b, is proportional to b,(w).

Although this method finds the maximal coherency, it is perhaps too brutal to be used
in applications. A drawback is that one arrives at complex-valued scalings that are different
for each sequence and interpretation may be difficult. In addition, the real-valued canonical
series g{X,(t)} = Z,(t) and h{X,(t)} = Z,(t), which are obtained by linear filters, may be
difficult to interpret because of the complexity of the transformations. Also, for moderate
sample sizes, the estimated maximal squared coherency might be close to one even if the
two series are independent. That is, the significance levels, the null hypothesis being that
the two series are not coherent, may be too large to be useful. Instead, to enhance inter-
pretability, we concentrate on the problem of scaling where we require the scales to be
real valued. Nevertheless, the maximal coherency gives an upper bound that can be used
as a benchmark for other techniques.

3. MODELS AND APPLICATIONS
3-1. Detecting a common signal: Local alignment

In local alignment, we assume that the two sequences under investigation are in phase,
and that each sequence contains at most one common signal or pattern. They may be
subsequences of larger sequences. The case of global alignment, where we do not assume
that the sequences are in phase but may share several different common signals, will be
considered in § 3-2. Waterman & Vingron (1994) provide a discussion of local and global
alignments as they pertain to DNA sequences. A general theory for the real-valued scaling
problem is developed in the Appendix. In this section we assume that the sequences are
defined on the same state-space and we set k;, =k, =k.

Stoffer (1987) proposes the local model

Y(t) = p:i + 8(1) + &:(1), (31)

where p; =(p1, ..., pu), and S(t) is a zero-mean realisation of a stationary k x 1 vector-
valued time series that is uncorrelated with the zero-mean, stationary k x 1 vector-valued
series ¢;(t) (i =1, 2). There may, however, be some dependence structure between S(t) and
e;(t); see Stoffer (1987) for details. Furthermore, S(¢) has a k x k spectral density matrix
fs(®), and e;(¢) (i=1,2) have common k x k spectra denoted by f (w). Here, S(t) is a
stochastic signal that is common to both time series X;(¢) and X,(¢), or, equivalently,
Yi(¢) and Y,(2).

Let B=(B1,--.,B) € R* (B+0) be a vector of common scalings associated with the
categories {cy,...,c,} of both sequences X;(t) (i=1,2). Define the real-valued series
Xi(t, B)=B'Y(¢) for i =1, 2. We will show in the Appendix, Proposition A-2, that, under
the model conditions (3-1), the optimal strategy is to select common scales for both
sequences X,(t) and X,(t). The model can now be rewritten, for i =1, 2, as

Xi(t; B)=B'pi + B'S(2) + B'es(1).

Let f3;(w; B) be the spectrum of scaled process X, (t; B); similarly, let f,,(w; B) denote
the spectrum of X,(¢; B) and let f;,(w; B) denote the cross-spectrum between X, (¢; f) and
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X,(t; B). The following identities hold:
Jilw; B)= B fos(@)B + B fee@)B =B f5(@)B+ B fe(w)p (i=1,2)
fualw; B)=B'f(@)p=B'f5(w)p.
Both fi™(w) and f'™(w) are skew symmetric, where the supersripts ‘re’ and ‘im’ denote the
real part and the imaginary part, respectively, of the complex matrix. The coherence
between X, (t; ) and X,(¢; B) is
B'fs(@)B
Bfi(@)B+ el
Setting b = { f=(w) + f=(w)} *B, subject to the standardisation b’b = 1, we write (3-2) as

Ky (w; B)= (32)

Kp(0; b) =b'{ f3(@) + fe(0)} HfR(@){f5(@) + fL(0)} . (33)
It follows that the maximum value of (3-3) is the largest scalar A(w) such that
{fie(@)+ fa(@)} T E(@){f) + fa(o)} o) = Mw)b(o). (34)

The optimal scaling, f(w), is taken proportional to {f™(w)+ f=(w)} ~*b(w). This value
of B(w) will maximise the coherency at frequency w between the two sequences, with the
maximum value being A(w). That is, K;,(w; B) < Ky, {w; f(w)} = A(w), with equality when
B is proportional to f(w).
If f;;(w) denotes consistent estimators of the corresponding spectra and cross-spectra,
fij{w), of the Y(t) processes, for i,j=1,2, consistent estimators of ffi(w) and
(@) + f(w), under the model conditions (3-1), are given by

fre() = {7 5() + F5(0)} /2 = { F5(0) + FH)}/2, (3-5)
fre(w) + (@) = {F55(0) + F5(@)}/2. (3-6)

These lead to consistent estimators of the maximal coherency and the corresponding
optimal scalings via (3-4). If A(w) is a unique root, from which it follows that A(w) >0,
then the asymptotic distributions of the estimator of A(w) and the corresponding estimator
of B(w) based on (3-5) and (3-6) are normal (Stoffer, Tyler & McDougall, 1993).

An alternative approach is to test the null hypothesis that there is no signal common
to both sequences, that is, f,,(») = 0. Note that, if the model (3-1) is correct, this hypothesis
is equivalent to K,,(w; B) =0 for any scaling . For a fixed value of f, a frequency-based
F-test for testing for a common signal in the scaled sequences X;(t; ) and X,(t; f) was
described in Stoffer (1987) by extending the work of Brillinger (1980) to the discrete-
valued time series case. We now extend that approach by selecting f(w) € R¥, f(w) +0, to
maximise the F-statistic at each Fourier frequency.

Given data {Y(t),t=1,...,n},fori=1,2, let

di@) =2 3 ¥(t) exp(—ioon)

t=1
be the corresponding finite Fourier transform. Let d;(w; B) denote the Fourier transform
of the scaled series X;(t; B) (i =1, 2) and note that d;(w; f) = f'd;(w) (i = 1, 2). The average
transform of the scaled series is

d(w; B) = {di(w; )+ dy(w; B)}/2=B'd+(w),
where d ., (w) = {d;(®) + d,(w)}/2.
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Let w; be a frequency of interest and consider the collection of (2M + 1), for M fixed,

Fourier frequencies centred at w;, {®;+, = @;+ 2nm/n; m= —~M, ..., M}, but excluding
w =0, 7. Define
M
H(wj; B)= Z |+ ()4 m5 B,
m=-M
2 M
E(wj§ B) = Z Z Idi(wj+m; ﬂ)_d+(a)j+m; ﬁ)lz

i=lm=-M

For fixed B, it can be shown that, assuming the Y(t) processes are mixing, as n— oo,
H(wj; B)—={B'fs(w)p + 3B fec(@)B} 13/2, (37)
E(wj; B)—{B'fe(wp)B}xs/2 (3-8)

in distribution, where the y? variates are independent, each with v=2(2M + 1) degrees of
freedom (Brillinger, 1980). From (3-7) and (3-8) it is seen that a frequency and scale
dependent F-statistic that can be used for testing the presence of a common signal 1s

2H(wy; B)
E(wj; B) ,
which, under our null hypothesis, has an asymptotic F(v, v) distribution.

We seek the scaling f(w;) + 0 that maximises F(w;; ) at frequency w;, for each w; of
interest. First define the matrices H(w;) and E(w;) as

Flwj; B =

M
H)= Y di(@;+n)di(@;en),

m=—-M
2 M
E(wj) = Z z {di(wj+m) - d+(wj+m)} {di(wj+m) - d+(wj+m)}*'
i=lm=-M
We can then write

WH()B _ 2B H*()B

BEw)p  BE®w)B’

so that the maximum value of F(w;; f) is the largest scalar, Ap(w;), satisfying
2H™(w;)b(w;) = Ap(w;)E™(w;)b(w;);

the optimal scaling, f(w,), is taken proportional to E™(w;) *b(w;). This value of p(w;)
will maximise the F-statistic at frequency w;, with the maximum value of the F-statistic
being Ag(w;).

Under the assumption that Y;(t) and Y,(¢) are mixing, the asymptotic (n— co) null
distribution of Ar(w;) is that of Roy’s largest root, the distribution of which can be found
in Muirhead (1982, pp. 481-4) along with some approximations; for some tables see
Anderson (1984, Appendix B). Finite sample null distributions are discussed in § 4-2.

There is a link between the hypothesis testing approach and consistent estimation as
described in (3-5) and (3:6). Note that the averaged periodograms

F(wj; B) =

_ oM g

falw)=02M +1)7! _Z_ 5{1‘1"2(601-+m)+15°1(w,-+m)}, (39)
_ _ M
ful@)+ falw)=CM+1)"" Y —2_{Ilie1(a)j+m)+-[562(wj+m)}a (310)

m=-M
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where [;;(w) = d;(w)d}(w) (i, j=1,2), can be written in terms of H™(w;) and E"(w;). In
particular, (3-9) and (3-10) can be written as

fralw;)=(2M + 1) " {H (0;) —3E™(@,)}, [o(w)=(2M + 1) E™w)).
Using (3-9) and (3-10), we may write
_ BTR@) _ H@; p—3E@s P Fgp)-1
Bia(@)B+ B felw)B Hlw; B)+3E(@y; f)  Flog f)+1

provided that F(w;; ) > 1; otherwise, set K,,(w;; f)=0. It is clear that, for any fixed M,
the scaling B(w;) that maximises the F-statistic, F(w;; f), also maximises K,(w;; B).

Ku(wj; B)=

3-2. Detecting common signals: Global alignment

We now extend the model of § 3-1 to include the possibility that there is more than one
signal common to each sequence, and that the sequences are not necessarily aligned. Here,
we assume the global model

q q
Yity=pi+ Y Si(O)+e(t), L(t)=p,+ ) Si(t—1;)+ex(t),
j=1 j=1
where S;(t) (j=1,..., q) are zero-mean realisations of stationary k x 1 vector-valued time
series that are mutually uncorrelated, and in addition are uncorrelated with the zero-
mean, stationary k x 1 vector-valued series e,(t) and e,(t). Furthermore, S;(t) has k x k
spectral density matrix g;(w) (j=1,...,q) and ¢,(t) (i=1, 2) are uncorrelated and have
common k x k spectra denoted by f.(w). It is hypothesised that the processes S;(t) are
stochastic signals that are common to both time series X, (t) and X,(t), or, equivalently,
Y,(¢) and Y,(t). We do not specify 1,,. .., 7,, or the integer g > 0; although the problem
of their estimation is interesting, we do not consider that problem here. Of particular
interest is whether or not g =0.
Using the notation of the previous sections, we note the following conditions:

(@)= (@)= 3. £4(0)+ ), frale)= 3. £(0) explion,),

j=1

Let B=(B4,...,B:) € R (B +0) be a vector of common scalings, and write the scaled
processes as X;(t, f) = p'Y,(¢) (i=1, 2). Then the squared coherency between X, (t, ) and
XZ(t5 ﬁ) iS

i=1 B'g5(w)B explior)?
1B () B ’

where we have written f(w) = f1;(w) = f5,(w). We will show in the Appendix, Proposition
A-2, that the optimal strategy is to select common scalings.
Setting b = f™(w)#B, with the constraint b'b = 1, we write (3-11) as

K (w; )= > (311)

2

. (3-12)

q

K% (w; b) = 'b’ { Y (o) g (o) f(w) " exp(i(mj)} b

Jj=1

Define the complex-valued matrix

Q@)= 3 f*) *g5(0)f (@) explior) = 0(@) + Qo)
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and note that Q™(w) and Q™(w) are symmetric, but not necessarily positive definite,
matrices. Now, write (3-12) as

Ki(w; b) = {b'Q™()b}” + {b'Q™(c)b}>. (313)

The squared coherency, (3-13), can be maximised via Proposition A-2. In particular,
the recursion

by=&1{Q"(@)b;-1bj-10™(@) + Q™(@)b;_1bj-10™w)} (j=1,2,...) (314)

can be employed. In (3-14), the notation &,(A4) means the eigenvector associated with the
largest eigenvalue of A. The algorithm is initialised by setting b, to either &, {Q™(w)?} or
6,{0™(w)*} depending on which vector produces the larger value of K2,(w; b). From
Propositions A-1 and A-2 we know that K2,(w; b;) > K3,(w; b ;-1). Maximisation can also
be achieved iteratively via Newton—Raphson; the details are given in the Appendix. The
optimal scaling vector at any particular frequency, B(w), is taken proportional to
f™(w)” *b(w), where b(w) is the maximising vector.

Given consistent estimators fn(a)) fzz(w) and fu(a)) of the corresponding spectral
matrices, we estimate f(w) by

F(@) =3{fi1(@) + fra(@)}.

Also, since

{f12(0) + ‘13(60)’}/2={fi‘é(w)+f‘z°1(w)}/2=Zq: 37 (w) cos(wr;),
j=1

. . . . q .
{B(@) + fB(0)}/2={B) - fH0)}/2= ) gfw)sin(wr)),
ji=1

consistent estimators of Q™(w) and Q"™(w) are given by

07(@) = {/1(@) + 5@} "5 0) + B HIT0) + FHe)} %,

0™(0) = {/Ti(@) + f5(@)} "*{/B() + [B0) HS ) + FH@)
respectively.

It is more difficult to obtain asymptotic null distributions for this case than in local

alignment and we do not address this problem here. Finite sample null distributions are
discussed in § 4-2.

4. DISCUSSION AND EXAMPLES
4-1. Numerical behaviour

We first focus on the numerical methods of § 3-2. Fix w and drop it from the notation.
Since K%,(b) given in (3-13) is a quartic, numerical maximisation should present no prob-
lem when there is a unique maximum and a good starting value. Proposition A-1 in the
Appendix provides such a starting value, namely b, described after (3-14). Our experience
is that K%,(b,) is frequently very close to the maximum and the difference between the
maximum value, K%,(b), say, and K3,(b,) rarely exceeds 5%. It is often enough to carry
out a few iterations of (3-14). If a high degree of accuracy is desired, then one can run the
cheaper (3-14) a small number of times and then run the more costly Newton-Raphson
to accelerate the convergence. We have found this combination to be extremely fast and
to be practicable even with large sequences. Some computation times are reported in § 4-3
and convergence of the algorithm is discussed further in the Appendix.
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On a rare occasion, we found a difference of about 12% between K2,(b) and K2,(by).
The Newton—Raphson procedure, however, found the maximum in four iterations using
fourth place accuracy. In this example, k=3 and the vector of scalings, 8 = (B, B2, B3)
is scaled so that f, is held fixed at 1. Figure 1(a) shows the surface of K%,(p), defined in
(311), as B, and B, vary. In this particular example,

0-41 0-15 —0-06 —-013 —-047 —-008
gr= 015 —-020 025, Q™=| —047 016 —-012]. (41a)
—0-06 0-25 0-49 —008 —012 0-06

Note that, although there is a unique maximum, the surface contains ridges of near
maximum height. The global maximum is relatively small, corresponding to a squared
coherency of less than 45%.

Figure 1(b) shows an example of a favourable situation where the maximal coherency
is near one. In this case convergence, using fourth place accuracy, was attained after one
iteration of (3-14); in this example,

—0-07 007 -035 014 —-001 -—-003
Q° = 007 —-0-09 067 |, Qim= —0-01 005 —-015]. (4-1b)
—0-35 067 —018 —-003 —-015 -005
(@
50
§ 40
=~ 30 R
£ 2 \‘13\:§§\§\‘\\ 50
= 10 o\\\\\\\\\\\\ 30
& et o
_30 52

Fig. 1. Surface of K2,(B) (a) based on (4-1a), (b) based on (4-1b) as described in §4-1.

4-2. Simulation results

We briefly examine the finite sample null behaviour of the maximum F-statistic, Ax(w),
described in § 3-1, and the global alignment maximal squared coherency, Aga(w), say,
described in § 3-2. Here, and henceforth, frequency w is measured in cycles per unit time.
In the first example we simulated two independent sequences of n= 1000 observations.
The first series is a white noise sequence on four categories with p;; =018, p;, =031,
P13 =029, p;,=022; the second series is also discrete white noise with -p,; =0-30;
P2z =021, py3 =019, p,,=0-30. These proportions and sample lengths pertain to the
second example of § 43 and we will use the results there. The spectral estimates were
based on averaged periodograms with M.= 5. The 5% and 1% critical values for Ax(w)
based on 2500 repeated-simulations were 3-68 and 4-62, respectively. Referring to the
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discussion in the final paragraph of § 3-1, we note that 3-68 corresponds to a squared
coherency of {(3-68 —1)/(3-68 + 1)} = 32:8%, and 4-62 corresponds to a squared coher-
ency of 41-5%. In a similar simulation, the 5% and 1% critical values of Aga(w) were
47-5% and 56-2%, respectively.

To examine further the finite sample null distribution of Az(w) when signals are present,
we repeated the simulation described above, except that p;; =%, and then the first series,
X, (t), has an additional 80% chance that every third observation is ¢;, while the second
series, X,(t), has an additional 70% chance that every fourth observation is ¢,. Thus, each
series has its own individual signal, and both series have a common, but weak, signal at
o =75 and its harmonics. In this case, the 5% and 1% critical values were 3-71 and 494,
respectively. These critical values apply to any frequency except w = {5, its harmonics and
the endpoints.

Finally, in a simulation of 10000 observations of Roy’s largest root statistic with
22 numerator and denominator degrees of freedom, we found 3-59 and 4-76 to be the
approximate asymptotic 5% and 1% critical values of Ap(w).

4-3. Applications to DN A sequences

First, we compare two DNA sequences each of approximately 4000 base pairs (bp) long.
One is a gene of the Epstein—Barr virus (EBV) and the other is a gene of the herpes virus
saimiri (HVS). Both genes have been labelled BNRF1 since similarities between the two
have been noted by molecular biologists. The spectral envelopes, not shown here, indicate
that each gene contains a strong signal at a cycle of approximately 3. The EBV BNRF1
gene was studied extensively in Stoffer, Tyler, McDougall & Schachtel (1993).

Figure 2 compares three methods of computing maximal squared coherency. Figure 2(a)
shows the canonical variates approach of §2, lcv(a)) say; Fig.2(b) shows the local
alignment approach first mentioned in §3-1, equations (3-3)—(3-6), }, 4(w), say; and
Fig. 2(c) shows the global alignment approach of § 3-2, AGA(w) say. In each case we used
a triangular set of 2M + 1, M = 15, weights to do the smoothing. Each method appears
to give similar results in that the two genes show a strong match at a frequency of one
cycle every three bp, but the evidence is much stronger in Jov(@) and Aga(0). The fact
that 42 % ,(3) is about half of the value of ZCV(3) and )LGA(3) is most likely because the genes
are not homogeneous. We also note that, at frequency %, the global alignment method
attains nearly the same squared coherency, 0-82, as the canonical variates method, 0-86.
Thus, while enhancing the interpretation, little information is lost in considering common
real-valued scales.

With the global alignment model, the scales at the one-third frequency were 4 = 3-6,
C=68, G=71, T=0, which suggests that the match is due to strong bonding, that is
C =G, and that the nucleotides 4 and T are different and separate from C = G. Quite a
different outcome occurs when we consideér the local alignment model, although this model
would not be considered entirely appropriate for this situation. In this case the scales
were A =93, C=1-2, G =88, T=0, which suggests that the match occurs with the pairing
of the purines, A = G, and the pyrimidines, C = T. As we shall see in the next example,
this result could be true for part of the BNRF1 genes.

-The entire calculation of Agy(w) and ALA(co) across all Fourier frequencies, took about
25 seconds each on a Pentium 100 PC, with 16 MB of RAM, using the Gauss programming
language. The computation of AGA(w) to third place accuracy, took about 35 seconds; the
average number of iterations was 2, and the maximum number of iterations was 4.
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Fig. 2. Comparlson of the estimated maximal squared coherency between the gene BNRF1 of EBV
and of HVS using three methods as described in §4-3: (2) cangnical variates, lcv(w) (b) local
alignment, e £ 4(w); (c) global alignment, /'LGA(a))

In Stoffer, Tyler, McDougall & Schachtel (1993), we reported a rather strange result
about the gene BNRF1 of EBV. There, it was found that, although a cycle of  could be
found in most of the gene, the last 1000 bp appeared not to have any cyclic behaviour.
Figure 3(a) shows the spectral envelope of the final 1000 bp of BNRF1 of EBV super-
imposed on that of HVS. Note that there is considerable power at frequency 1 for the
HVS whereas nothing is there for the EBV gene.

Nevertheless, Fig. 3(b) shows a startling result. To see if the two genes are coherent in
the final 1000 bp, we used the maximum F-statistic approach described in the second part
of § 3-1, with M =5, which gives v = 22. The proportions of 4, C, G, T in each series are
given in § 4-2, and, based on that simulation, the 0-01 significance threshold is 4-62. In
Fig. 3(b), it is seen that Ap(3) =7, which we can safely consider to be significant. Hence,
while no signal was evident in this part of EBV-BNRF1 using the spectral envelope, there
is evidence that it is coherent with a similar gene in HVS.

The scales at o =3 were A =4-8, C= —1-5, G=87, T=0, which suggests, to a certain
degree, the pairing of the purines, A = G, and the pyrimidines, C = T. Recall that this
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Fig. 3. (a) The spectral envelope of the final 1000 bp of BNRF1 of EBV (dark curve) and of HVS.

(b) Maximum F-statistic method (§ 3-1) applied to the final 1000 bp of BNRF1 of EBV and of HVS,
as described in § 4-3.

possibility was suggested in the previous example. The global alignment method applied
to these subsequences yielded approximately the same results.
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APPENDIX
General theory and algorithms

First, consider the problem of obtaining maximal coherency with real-valued scales. That is, let
a=(0,...,0, ) R (+0) be a vector of scalings associated with the categories of the first
series, X;(¢), and let f=(By,..., ) € R*2 (B4 0) be a vector of scalings associated with the
categories of the second series, X,(t). The scaled series are X, (1, o) = «’Y;(¢), and X, (¢, f) = 'Y, (¢).
The squared coherency between X, (¢, ) and X,(t, B) can be written as

o' f12(w) BI?
{o' (@ {B'fH(w)B}

Kh(w; o, f) = (A1)
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Setting a = %5 (w)*a and b = f55(w)? B, subject to the standardisations a’a=1 and b'b =1, and
writing
0() = 55(@0) " f12(0) fH(w) "* = 0™(w) +1Q™(w),
we may write (A1) as
K} (o; a,b) = {a'Q™(@)b}” + {a'Q™(w)b}”. (A2)
The goal is to find a and b to maximise (A-2) for each w of interest. The maximisation can be

accomplished iteratively via an algorithm based on the following proposition.

PrOPOSITION A-l. Let A and B be real-valued k, x k, matrices, and let x and y be real-valued
unit length vectors of dimensions ky and k,, respectively. Define

u(x, y) = (x'4y)* + (x'ByY’,

and let y, be an arbitrary real-valued k, x 1 unit length vector. Define the sequence of vectors x; to
be the eigenvector corresponding to the largest root of the at most rank 2, nonnegative definite matrix

Ay;j_1yj-1A"+ By;_1Y;-1 B,

and the sequence y; to be the eigenvector corresponding to the largest root of the at most rank 2,
nonnegative definite matrix

A'x;x;A + B'x;x;B,

forj=1,2,.... Let £(.) and &(.) denote the largest eigenvalue function and corresponding eigen-
vector function, respectively, and define

Unin = max [Z,(4'A) + {£1(A4)BE,(4'A)}Y, &1(B'B) + {61(BB)A¢,(B'B)}?],
Umax = L1(A'A) + £, (B'B).
Then,
u(Xjh1, Vie) Z x5 Y (G=12,.00)  thpin S u(X, §) < Unpaxs
where % and § maximise u(x, y).
Proof. First note that
u(x, y) = x(Ayy'A’' + Byy'B')x = y'(A'xx’A 4 B'xx'B)y.

From the first relationship it follows that u(x;+y, y;) = u(x, y;), for any x of unit length, and from
the second relationship it follows that u(x;,1, yj+1) = u(X;+1, ), for any y of unit length. Hence
W(Xj41, Vi+1) Z (X415 ¥;) = ulx;, y;). The upper bound u,,, is easily established and the lower
bound is established using the singular value decompositions of 4 and B. O

If we set A=0Q"(w) and B = Q™(w) for a given w, the algorithm given in Proposition A-1 can
be used to find the scalings, a(w) and b(w), say, that maximise (A-2). The algorithm is initialised
by setting bo(w) equal to either & {Q™(w)'Q™(w)} or & {Q™(w)'Q™(w)}, depending on which vector
produces the lower bound up,(w). In turn, c(w) and B(w) are taken proportional to

re (0) " *a(w) and f55(w) *b(w), respectively. Note that the algorithm requires only the compu-
tation of latent roots and vectors of at most rank 2, nonnegative definite matrices, regardless of
the dimension of the state-spaces. Moreover, by Proposition A-1 we know that the objective function
increases with each step. Since the objective function is bounded the algorithm must converge.
However, the algorithm is local, and convergence to the global maximum is not guaranteed. As
discussed in § 41, it is our experience that uy,(w) is typically close to the global maximum and
that the algorithm usually converges. The maximum value of K2,(w; a, b) is also bounded above
by Acy(w), which corresponds to allowing a and b to be complex as described in § 2. Hence, a plot
of U, () and min {u,, (), Acy(w)} across the frequencies w can be useful in detecting potential
problems. Typically, these bounds are very tight.
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In § 32, the problem was to maximise a function of the form u(b) = (b'Ab)? + (b'Bb)?, where A
and B are k x k symmetric matrices. The maximisation can still be accomplished iteratively via
Proposition A-1 in conjunction with the following result.

PROPOSITION A-2. If, in addition to the conditions stated in Proposition A-1, ky =k, =k and the
matrices A and B are symmetric, the maximum value of u(x, y) is attained over (x, y) when x = y.

Proof. Let %, J maximise u(x, y) over all x, y of unit length. Since A and B are symmetric,
u(x, y) = x'(Ayy'A + Byy' B)x = y'(Axx'A + Bxx'B)y,

so that X and ¥ satisfy % = &,(457'A + Byy'B) and j = & (A%%X'A + BXX'B). Hence there are constants
4, and A, such that A% = (47’4 + BJ¥'B)% = (y1 A + 7, B)J = CJ, where y; = ¥'4J and y, = X'BJ,
and, similarly, 4,5 = (4%%'A 4+ BX%'B)j = (y; A + y,B)% = Cx. It follows that 1, =X'Cy and 1, =
#C%, and thus 4, = A, = u(%, ). Since 4, = A, = 4, we have 4>% = CAj = C2% and 2§ = CA%x = C*};;
that is, 4 is the largest eigenvalue of C. Hence we can choose X = j = &;(C). O

Propositions A-1 and A-2 lead to the recursion given in (3-14). Another important consequence
of Proposition A-2 is that it gives sufficient conditions under which choosing common scales is not
only parsimonious but optimal. Specifically, if k, = k, = k and Q™(w) and 0™(w) are both symmetric,
then the maximum of K2,(w, a, b), as defined in (A-2), is achieved when a = b; note that the models
of § 3 would produce this form.

As noted in § 32, (3-13) can be maximised iteratively via Newton—Raphson. For ease of discus-
sion, we fix ® and drop it from the notation. To solve the constrained maximisation
problem using Lagrange’s method, we set V(b)=K?%,(b) —n(b’b—1). Then, setting the k x 1
vector VW(b)= oV (b)/ob =0, and using the fact that Q™ and Q™ are symmetric, we find
n=2(b'Q™b) + 2(b'Q™b) so that

VO(b) = (B'QbHQ™ — ('O b)}b + (B'Q™DIQ™ — (b'Q™b)] }b,

where I is the k x k identity matrix. One can then proceed by solving V¥(b)=0 via Newton-
Raphson.

REFERENCES

ANDERSON, T. W. (1984). An Intioduction to Multivariate Statistical Analysis, 2nd ed. New York: Wiley.

BRILLINGER, D. R. (1975). Time Series: Data Analysis and Theory. San Francisco: Holden-Day.

BRILLINGER, D. R. (1980). Analysis of variance problems under time series models. Handbook of Statistics, 1,
Ed. P. R. Krishnaiah, pp. 237-78. Amsterdam: North Holland.

MURHEAD, R. J. (1982). Aspects of Multivariate Statistical Theory. New York: Wiley.

Storrer, D. S. (1987). Walsh-Fourier analysis of discrete-valued time series. J. Time Ser. Anal. 8, 449-67.

StorreR, D. S., TYLER, D. E. & McDouGaALL, A. J. (1993). Spectral analysis for categorical time series:
Scaling and the spectral envelope. Biometrika 80, 611-22.

STOFFER, D. S., TYLER, D. E., McDoucGALL, A. J. & ScHACHTEL, G. A. (1993). Spectral analysis of DNA
sequences (with Discussion). Bull. Int. Statist. Inst., Bk 1, 345-61, Bk 4, 63-9.

WATERMAN, M. S. & VINGRON, M. (1994). Sequence comparison significance and Poisson approximation.
Statist. Sci. 9, 367-81.

[Received September 1995. Revised July 1997]



