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Local Spectral Analysis via a Bayesian Mixture
of Smoothing Splines

Ori ROSEN, David S. STOFFER, and Sally WOOD

In many practical problems, time series are realizations of nonstationary random processes. These processes can often be modeled as

processes with slowly changing dynamics or as piecewise stationary processes. In these cases, various approaches to estimating the time-

varying spectral density have been proposed. Our approach in this article is to estimate the log of the Dahlhaus local spectrum using a

Bayesian mixture of splines. The basic idea of our approach is to first partition the data into small sections. We then assume that the log

spectral density of the evolutionary process in any given partition is a mixture of individual log spectra. We use a mixture of smoothing

splines model with time varying mixing weights to estimate the evolutionary log spectrum. The mixture model is fit using Markov chain

Monte Carlo techniques that yield estimates of the log spectra of the individual subsections. In addition to an estimate of the local log

spectral density, the method yields pointwise credible intervals. We use a reversible jump step to automatically determine the number of

different spectral components.

KEY WORDS: Evolutionary spectra; Locally stationary time series; Mixture of splines; Reversible jump Markov chain Monte Carlo.

1. INTRODUCTION

In many practical problems, the spectral analysis of time
series that are realizations of nonstationary random processes is
of interest. For example, analyzing the Southern Oscillation
Index (SOI) time series is important in monitoring global cli-
mate change and predicting rainfall. Priestley (1965) was the
first to introduce the concept of evolutionary spectra and a
Cramér representation with a time-varying transfer function.
This idea was later refined by Dahlhaus (1997) where he
established an asymptotic framework for locally stationary
processes. The definition of a Dahlhaus locally stationary
process will be given in the next section, but throughout the
remainder of this section, we use the term locally stationary in a
generic sense.

Several authors have considered the estimation of locally
stationary processes under a variety of assumptions. The esti-
mators that were developed by Dahlhaus for his evolutionary
spectra are consistent, but the method is not computationally
efficient and can be problematic when the time series is long.
Chiann and Morettin (1999) proposed a wavelet based version
of the estimator proposed by Dahlhaus. Various other ap-
proaches have been suggested to overcome the computational
difficulty. Adak (1998) proposed a nonparametric methodology
based on segmenting time in such as way as to allow a data
dependent choice of window lengths. Ombao, Raz, Von Sachs,
and Malow (2001) proposed nonparametric estimators based on
smooth local exponential functions. Guo, Dai, Ombao, and von
Sachs (2003) extended the work of Ombao et al. (2001) to allow
for simultaneous smoothing in both the time and frequency
domains. Our primary goal is to establish a Bayesian approach

for estimating the time-varying spectrum of a Dahlhaus locally
stationary process in a semiautomatic fashion. We will make our
goal more precise in the next section.

Another approach to analyzing locally stationary time series
is to consider fitting piecewise autoregressive (AR) models;
this approach was suggested by Kitagawa and Akaike (1978).
Recently Davis, Lee, and Rodriguez-Yam (2006) suggested
fitting piecewise AR models using minimum description length
and a genetic algorithm for solving the difficult optimization
problem. Although Davis et al. (2006) showed that their sim-
ulation results for a few locally (and piecewise) stationary AR
models perform better than those of Ombao et al. (2001), it is
clear that, generally, a parametric technique will outperform a
nonparametric technique when the parametric model is correct.
If an investigator is certain the dynamics generating the data
are locally stationary AR models, then we would suggest using
a parametric approach. If, however, an investigator is uncertain
about the dynamics of the process, a nonparametric procedure
might be preferred. Indeed, some authors, for example
Thomson (1990) in analyzing locally stationary geophysical
series, warn strongly that AR spectra can be misleading.

One of the difficulties of the non-Bayesian approaches is that
they do not jointly model the uncertainty surrounding the point
estimates of the spectra and the point estimates of the number
and location of the locally stationary segments. Thus, to make
inference regarding the individual locally stationary spectra,
plug-in point estimates of the number and location of the
locally stationary segments are used. Such an approach
underestimates the uncertainty surrounding estimates of the
locally stationary spectra.

Bayesian approaches to modeling nonstationary time series
include Lavielle (1998) and Punskaya, Andrieu, Doucet, and
Fitzgerald (2002). Punskaya et al. (2002) proposed a Bayesian
method for fitting piecewise linear regression models like AR
models. Their method is based on placing prior distributions on
the number of change points, their locations, and the order of
the linear regression in each segment. The method is imple-
mented via reversible jump Markov chain Monte Carlo
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(MCMC) methods.Unlike the work of Punskaya et al. (2002),
our approach is nonparametric.

There are four main contributions of our article. First, we
present a novel method of modeling the time varying log spectral
density using a mixture of a finite but unknown number of
individual log spectra, where the mixture weights of the indi-
vidual log spectra vary with time. The basic idea of our
approach is to first partition the data into small sections. We
then assume that in any given partition, the log spectral density
of the process is a mixture of individual log spectra. We
introduce nonstationarity into our model by allowing the
mixing weights of the individual log spectra to change
smoothly across partitions.

The second contribution is that we perform model averaging
rather than model selection by allowing the number of under-
lying individual spectra to be unknown and to vary from j ¼ 1,
. . ., J. To this end, we construct a MCMC scheme using the
reversible jump method of Green (1995) to move between
models of varying numbers of components. Thus, our resulting
estimate of the time varying log spectra is averaged across
models of varying numbers of components.

The third contribution of our article is that we use the output
from the MCMC scheme not only to estimate but also to make
inference regarding the time varying log spectra, the number of
underlying locally stationary spectra, and the location and rate
at which the time series changes from one locally stationary
process to another.

Finally, segmentation methods, such as those mentioned in
our introduction, are entirely local in that estimates are based
only on the data in the segment (with perhaps some small
overlap from contiguous segments). Our method uses all of the
data in the estimation and inference procedures. For example,
in Section 7.2, we will analyze seismic data. In those examples,
the signals are amplitude modulated wherein the strength of a
signal may vary over time but the frequencies remain constant.
Any existing segmentation method would ignore this fact and
simply base its estimates on the data in each segment. Our
method will recognize the fact that there are similarities in the
signals over the entire sample and will use the information in
all of the data to estimate the evolutionary spectrum.

2. LOCALLY STATIONARY TIME SERIES

The Dahlhaus (1997) approach to modeling evolutionary
spectra is based on a time-dependent analog to the classical
Cramér spectral representation of stationary processes. The
following definition is for the case of a zero-mean process.

Definition 1 (Dahlhaus). A sequence of zero-mean sto-
chastic processes, {Xt,N; t ¼ 1, . . ., N}, for N $ 1, is called
locally stationary with transfer function A0 if there exists a
representation

Xt;N ¼
ð1=2

�1=2

A0
t;NðnÞ expði2pntÞ dZðnÞ; ð1Þ

where

(1) Z(n) is a zero mean orthogonal increment process on
[ �1/2, 1/2];

(2) There exists a positive constant K and a smooth function
A: [0, 1] 3 [ �1/2, 1/2]! C with Aðu; nÞ ¼ Aðu;�nÞ such
that for all N,

sup
t;n
jA0

t;NðnÞ�Aðt=N; nÞj # K N�1; ð2Þ

(3) For all n, A(u, n) is continuous in u. The Dahlhaus evo-
lutionary spectrum can then be defined as follows.

Definition 2 (Dahlhaus). The evolutionary spectrum of
a Dahlhaus locally stationary process at time u 2 [0, 1] and
frequency n 2 [ �1/2, 1/2] is given by f(u, n) ¼ |A(u, n)|2.

We refer the reader to Dahlhaus (1997) for examples of
processes satisfying Definition 1. Note that the first argument
of A(u, n) is rescaled to live on the unit interval and increasing
the number of observations, N, means we allow for more data
to be observed locally in the sense of infill asymptotics, rather
than in the sense of increasing domain asymptotics (i.e.,
observing more data in the future). Equation (2) deals with the
smoothness of A in u such that it is allowed to change only
slowly over time. The idea behind this is essentially that for
each fixed N, we implicitly assume some local interval of
stationarity about each time point and a smooth change from
one interval to the next.

Because a Dahlhaus locally stationary process changes
smoothly in time, u, we may approximate the evolutionary
spectrum by a piecewise stationary process as follows. For a
fixed N, consider a partition of the unit interval into S segments
of equal length chosen in such a way that n ¼ N/S is small
relative to N. We denote the corresponding intervals by
Is ¼ ðððs� 1Þ=SÞ; ðs=SÞ�, for s ¼ 1, . . ., S. Next, we define the
piecewise stationary process

eXt;N ¼
XS

s¼1

Xs;t0 dðt=N; IsÞ; ð3Þ

where t9 ¼ 1, . . ., n [i.e., t9 ¼ (t � 1) (mod n) þ 1], and where
d(t/N, Is) ¼ 1 if t/N 2 Is and d(t/N, Is) ¼ 0 if t/N;Is. The
stationary process Xs,t9 is defined to have a spectral densityefsðnÞ, which is given by averaging the evolutionary spectrum in
that interval; i.e.,

efsðnÞ ¼
1

S

ð
u2Is

f ðu; nÞ du ð4Þ

for s ¼ 1, . . ., S.
In the asymptotics, we may let S! ‘, but S/N! 0 as N!

‘. Hence, because of the smoothness of A(u, n) in u, the local
spectral density of eXt;N , namely efsðnÞ for t/N 2 Is, and s¼ 1, . . .,
S, well approximates the evolutionary spectrum, f(u, n), of Xt,N,
provided N and S are sufficiently large. In addition, Ombao
et al. (2001, Theorem 1) argued that under mild conditions,
locally stationary processes can be well approximated by
piecewise stationary processes in the sense that the average
mean square error between Xt,N and eXt;N is O(n2/N2).

Our general technique relies on the approximation given by
(3)–(4). To make our technique easier to understand, however,
we first describe the case for a stationary process in the next
section. After the stationary case has been discussed, we will
then describe our technique for the Dahlhaus locally stationary
case in the subsequent sections.
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3. SPECTRAL ESTIMATION FOR STATIONARY
TIME SERIES

As previously indicated, our general approach to the prob-
lem of estimating local spectra is best understood by first
explaining the technique for estimating the spectral density of a
stationary process.

3.1 Model

Suppose that a stationary time series, {Xt}, has a spectral
density given by f(n), for �1/2 < n # 1/2. We assume that f(n)
is bounded and positive. Given a realization, x1, . . ., xn, the
periodogram of the data at frequency n (measured in cycles per
unit time) is

InðnÞ ¼
1

n

Xn

t¼1

xt expð�2pintÞ
�����

�����
2

:

Let nk ¼ k/n, for k ¼ 0, . . ., n � 1, be the Fourier frequencies.
Whittle (1957) showed that, under appropriate conditions, for
large n, the likelihood of x ¼ (x1, . . ., xn) can be approximated
as

pðxj f Þ}
Yn�1

k¼0

exp � 1

2
log f ðnkÞ þ InðnkÞ=f ðnkÞ½ �

� �
: ð5Þ

Let yn(nk) be the log of the periodogram evaluated at the
Fourier frequencies, then the representation in (5) suggests the
log-linear model

ynðnkÞ ¼ log f ðnkÞ þ �k; ð6Þ
where yn(nk)¼ log In(nk) for k¼ 0, . . ., [n/2], where [n/2] is the
largest integer less than or equal n/2, the �k’s are independent,
�k; logðx2

2=2Þ for k¼ 1, . . ., [n/2]� 1, and �k; logðx2
1Þ for k¼

0, [n/2]. Note that in (5), there are only [n/2] þ 1 distinct
observations because the spectral density and the periodogram
are both even functions of n. For ease of notation, in what
follows, we assume that n is even.

It is seen from (6) that the log spectral density can be esti-
mated nonparametrically with the log periodogram as the
dependent variable. Wahba (1980) used a frequentist approach
for estimating the log spectral density via cubic smoothing
splines. Carter and Kohn (1997) used a Bayesian approach to
modeling the log spectral density as cubic smoothing splines as
well by expressing Equation (6) in a state-space form. They
approximated the error distribution in (6) by a mixture of five
normal distributions and introduced latent component indica-
tors to facilitate the estimation.

3.2 Priors

Let g(nk) ¼ log f(nk). To place a prior on g(nk) we follow
Wahba (1990, p. 16) and express g(nk) as the sum of its linear
and nonlinear components, so that

gðnkÞ ¼ a0 þ a1nk þ hðnkÞ;
where h(nk) is the nonlinear component. We place a smoothing
spline prior on h(n), which means that h(n) is a zero mean
Gaussian process with variance-covariance matrix t2V, where
the ijth element of V is given by

covðhðniÞ; hðnjÞÞ ¼ t2vij;

where t2 is the smoothing parameter and

vij ¼ n2
i ðnj � ni=3Þ=2; ni # nj:

The parameters a0 and a1 are the value of the log of the spectral
density and its first derivative at n ¼ 0, respectively. The
symmetry and periodicity of the spectral density mean that
(@ log f(n)/@n)|n¼0 ¼ 0. Accordingly, a1 is set to be identically
zero and the prior on a0 is N(0, ca), for some large ca. To
complete the prior specification on g(n), we assume p(t2) } 1/
t2.

To facilitate the computations we follow Wood, Jiang, and
Tanner (2002) and write h ¼ ðhðn0Þ; . . . ; hðnn=2ÞÞ0 as a linear
combination of basis functions so that h ¼ Xb, where the
columns of the design matrix X are the Demmler-Reinsch basis
functions evaluated at the Fourier frequencies and b is an (n/2
þ 1) 3 1 vector of regression coefficients. These basis func-
tions are constructed by decomposing V as V ¼ QDQ9, where
Q is the matrix of eigenvectors of V, and D is a diagonal ma-
trix containing the eigenvalues of V. Letting X ¼ QD1/2 and
setting the prior on b to be pðbÞ;Nð0; t2Iðn=2þ1ÞÞ, we have
Xb;Nð0; t2VÞ as required. In practice, one can retain only the
columns of X corresponding to the largest eigenvalues of V

resulting in computational saving without affecting the fit. The
model in (6) can now be expressed as

y ¼ a01þ Xbþ e;

where 1 is an (n/2þ 1) 3 1 vector of ones and e¼ (�0, . . ., �n/2)9
with the �k’s distributed as in (6). Note that this is the same
model as in Carter and Kohn (1997). Both this article and
Carter and Kohn (1997) assume a smoothing spline prior on the
log spectral density. We chose a different representation of this
prior for ease of computation and to avoid the introduction of
the latent component indicators used by Carter and Kohn
(1997).

4. SPECTRAL ESTIMATION FOR LOCALLY
STATIONARY TIME SERIES

In this section, we generalize the spectral analysis of sta-
tionary time series described in Section 3 to time series that are
Dahlhaus locally stationary as defined in Section 2. Given
observations {Xt, N; t ¼ 1, . . ., N} from a Dahlhaus locally
stationary process with evolutionary spectrum f(u,n), we con-
sider the approximation process f eXt;N ; t ¼ 1; . . .;Ng defined in
(3). In particular, given a segmentation S, we form the parti-
tioned data {Xs, t9; t9 ¼ 1, . . ., n; s ¼ 1, . . ., S} as described
in (3). Our goal is to use the partitioned data to estimate the
local spectra, efsðnÞ, as specified in (4), for s ¼ 1, . . ., S and to
use the estimated local spectra as an estimate of the evolu-
tionary spectrum f(u, n). The choice of the number of segments,
S, will be discussed after we present the model, but the basic
idea is that the finer the partition of the unit time interval, the
better the estimate of the evolutionary spectrum.

One obvious but primitive approach to this analysis is to
estimate the local spectra, efsðnÞ, individually in each segment
s ¼ 1, . . ., S using the techniques presented in Section 3.
Although this approach may be viable if, in fact, the data are
Dahlhaus locally stationary and changing slowly over time, we
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would like to have an approach that is more robust to depar-
tures from this assumption. For example, if the process of
interest is piecewise stationary, its time-varying spectra are not
smooth and may make jumps at certain time points. If we
segment such a process in such a way that a particular partition
contains a jump, assuming the data are stationary in that seg-
ment will lead to a bad estimate. Another problem with the
primitive method, as with all of the segmentation methods
previously mentioned, is that they do not use the information
from all of the data (or even data in contiguous segments), but
rather only from the data in that segment. To overcome these
drawbacks, our strategy is to model evolutionary spectra as a
mixture of an unknown but finite number of spectra. We make
these ideas precise in the following subsection.

4.1 Model

Given a segmentation S, our goal is the estimation of
gsðnÞ ¼ log efsðnÞ. To this end, we first calculate the periodo-
gram corresponding to each segment. Let ys¼ ( ys, 0, . . ., ys, n/2)9
be the log-periodogram for segment s, s¼ 1, . . ., S, evaluated at
the Fourier frequencies. We model these observations as

ys;k ¼ gsðnkÞ þ �k;

where gs(n) is the log of the spectral density for segment s, for
s ¼ 1, . . . S, and the �k’s for k ¼ 0, . . ., [n/2] are distributed as
in (6). We model gs(n) as a mixture of an unknown but finite
number of spectra so that

gsðnÞ ¼
XJ

j¼1

gjsðnÞ Prð jÞ;

where J is the maximum number of components, Pr(j) is the
prior probability that the mixture contains j components, and
gjs(n) is the log of the spectral density of a mixture of j com-
ponents in segment s. For a given number of mixture compo-
nents j and segment s we model gjs(n) as

gjsðnÞ ¼
Xj

r¼1

prjs log f rjðnÞ ;

where frj(n) is the spectral density of the rth component and prjs

is the unknown weight assigned to the rth component in seg-
ment s, with

Pj
r¼1 prjs ¼ 1: Note that the spectral density frj(n)

is common to all segments. The value of prjs represents the
probability that in a mixture of j components, the data in seg-
ment s have spectral density frj(n). A key point to note is that
these probabilities are parameterized to depend upon the seg-
ment s and are modeled using a multinomial logistic regression
to be specified in Section 4.5. This means that although the
component spectra are common to all segments, a time varying
estimate of the spectral density is obtained by allowing the
weights of the common spectra to change across segments.

4.2 Segmentation

It is important to note that the choice of the number of seg-
ments, S, is not crucial to our estimation process subject to certain
constraints. In theory there are potentially as many segments as
there are data points. However, practically, we need a minimum
number of observations in each segment to estimate the

spectral density and for the Whittle approximation to the
likelihood to hold. In simulations we found that using a
minimum of 64 observations in each segment gave reasonable
results (i.e., the estimates are qualitatively close to the actual
values, if the true local spectra have well separated peaks). If
an investigator is interested in a finer grid of frequencies,
however, then he or she she may choose a larger (but relatively
small) number of observations in a segment.

Many nonparametric local techniques, including the adap-
tive techniques that rely on orthogonal libraries and use
entropy-based basis algorithms, such as the Best Basis Algo-
rithm of Coifman and Wickerhauser (1992), use an arbitrary
maximum level of segmentation of the unit interval to initialize
the local analysis. In addition, most of these techniques use
dyadic segmentation for ease; by dyadic segmentation we
mean intervals of [0, 1] of the form (k2�j, (k þ 1)2�j), k ¼
0, . . ., 2 j� 1, for levels j ¼ 1, 2, . . . J, where J is the maximum
level. Although our method also requires picking a maximal
segmentation through the choice of S, it is not crucial that the
segmentation be dyadic.

Finally, but perhaps most importantly, is that the parameters
of the mixing function prjs in our model are of more impor-
tance than the number of segments because these parameters
control the location and rate at which the time series moves
from one stationary process to another. The prior on these
parameters is discussed in Section 4.5, and the sampling
scheme used to explore the posterior distributions of these
parameters is described in Section 5.

4.3 An Example

To illustrate our proposed method, consider a time series of
length 1024 generated from the following piecewise stationary
model

xt ¼
0:9xt�1 þ �t if 1 # t # 450
�0:9xt�1 þ �t if 451 # t # 1024;

�
where �t ; N(0, 1). For illustrative purposes, suppose we know
that there are two components (i.e., Pr(j ¼ 2) ¼ 1). We first
divide the time series into nonoverlapping segments each
containing n ¼ 64 data points. This gives a total of S ¼ 16
segments. Our estimate of the log spectra in segment s for s ¼
1, . . . 16 is

g2sðnÞ ¼ p12s log f 12ðnÞ þ ð1� p12sÞ log f 22ðvÞ: ð7Þ

Figure 1 shows the true (solid line) and estimated (dashed line)
log spectral density for xt¼ 0.9xt–1þ �t (left panel) and for xt¼
�0.9xt–1 þ �t (right panel), �t ; N(0, 1). Figure 2 plots the
estimated mixing function p12s as a function of the segment.
This figure shows that the probability that the data have spectral
density f12(n) is close to 0.91 at the beginning of the time series.
This probability decreases to 0.5 by the seventh segment and is
approximately 0.03 by the end of the time series.

4.4 Prior on the Component Spectra

As in Section 3.2, we express log frj(n) as

log f rjðnkÞ ¼ a0rj þ hrjðnkÞ
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and write hrj ¼ Xbrj. The priors on brj, and on a0rj for r ¼ 1,
. . ., j and j ¼ 1, . . ., J are as given in Section 3.2, and are
assumed to be independent across all r and j. The prior on t2

rj is
as in Section 3.2, and in addition we impose an ordering on t2

rj

for r ¼ 1, . . ., j and j ¼ 1, . . ., J, so that for a given j,
t2

1j >; . . .;> t2
jj: This ensures that the likelihood is identified.

4.5 Prior on the Mixing Probabilities

The mixing probabilities are expressed using the multi-
nomial linear logit model so that

prjs ¼
expðd9rjusÞPj

h¼1 expðd9hjusÞ
ð8Þ

with parameters drj, r¼ 1, . . ., j and j¼ 1, . . ., J. In (8), us¼ (1,
us)9, where the covariate us is taken as us ¼ s/S, and drj ¼ (d0rj,
d1rj)9. For identifiability, d1j is set to zero. Such logistic weights
are also used in the mixtures-of-experts model (Jacobs, Jordan,
Nowlan, and Hinton 1991). The priors on drj for r¼ 1, . . ., j and
j ¼ 1, . . ., J are bivariate normal with zero mean and variance
s2

dI2 and are assumed independent across all r and j. In all of
our analyses, s2

d was equal to 4.

4.6 Prior on the number of components, j

Typically, we assume a priori that the maximum number of
components is J and that Pr( j¼ k)¼ 1/J for k¼ 1, . . ., J. In the
simulated examples of Section 6, J was set to 10, whereas in the
real examples of Section 7, J was set to 20. We do, however,
consider the use of Poisson priors in the example of Section 7.1.

5. BAYESIAN INFERENCE

We estimate the log of the spectral density in segment s, for
s ¼ 1, . . . S by its posterior mean E(gs|y), with all unknown
parameters integrated out and we use MCMC to perform the
required multidimensional integration.

Figure 1. True (solid lines) and estimates (dashed lines) of the log spectral density. The left panel shows log( f12), which is the log of the
spectral density of the time series xt ¼ 0.9xt�1 þ �t. The right panel shows log( f22), the log of the spectral density for xt ¼ �0.9xt–1 þ �t.

Figure 2. Estimate of the mixing function p12s in (7) based on
16 segments.
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The expectation E{gs(n)|y} is defined as

EfgsðnÞjyg ¼
XJ

j¼1

ð
EfgsðnÞjy; uj; jgpðujjy; jÞduj Prð jjyÞ

where uj¼ða9j ;b9j;t9j;d9jÞ0, aj ¼ (a01, . . ., a0j), bj¼
ðb91j; . . .;b9jjÞ

0, tj¼ðt2
1j; . . .;t

2
jjÞ
0, and dj¼ðd92j; . . .;d9jjÞ. This

integral cannot be evaluated explicitly and we use MCMC
simulation to estimate it. In addition to the point estimates, we
construct (1 � a)-level pointwise credible intervals for the log
spectra by obtaining the a/2 and 1 � a/2 percentiles of the
MCMC fitted log spectra based on all the iterates after the
burn-in period. Note that these credible intervals reflect the
uncertainty surrounding not only our estimate of log frj but also
our uncertainty surrounding the number of components J and
the mixing probabilities prsj.

To simplify the simulation from the posterior distribution
p(uj, j|y), we introduce latent variables that are generated
during the simulation. The first of these is the number of
components j that are active at any point in the simulation.
Then given j define the vector of indicator variables gsrj for s¼
1, . . ., S and r¼ 1, . . ., j, where gsrj¼ 1 if ys originated from the
rth component, and gsrj ¼ 0, otherwise.

5.1 Sampling Scheme

We outline here the MCMC scheme for our model. More
details are given in the Appendix. The sampling scheme con-
sists of two parts; a between-model move followed by a within-
model move. The number of components j is first initialized,
and then conditional on this value, the other model parameters
aj, bj, tj, and dj are initialized.

1. Between Model Move
A new value of j is proposed, and conditional on this value,
parameter values for aj, bj, tj, and dj are proposed. These
proposed values are then accepted or rejected using a Met-
ropolis-Hastings step.
2. Within Model Move
Given the value of j, the parameters specific to a model of j
components are then updated as follows.

(1) Let b�rj ¼ ðarj;b9rjÞ0, r¼ 1, . . ., j, b�j ¼ ðb�
0

1j; . . . ;b�
0

jj Þ
0,

and X� ¼ ð1;XÞ. Generate b�j from pðb�j jtj;gj;X
�; ~yÞ

via Metropolis-Hastings steps where gj ¼ fgsrjg, for r ¼
1, . . ., j and s ¼ 1, . . ., S, are the component indicators,
and ~y ¼ ðy01; . . . ; y0SÞ

0.
(2) Generate tj from p(tj | bj).
(3) Generate dj from p(dj | gj, U) via a Metropolis-
Hastings step, where U is the matrix whose sth row is u0s;
s ¼ 1, . . ., S.
(4) Let gsj ¼ r if gsrj ¼ 1. Generate the component
indicators from pðgsj ¼ rjb�j ; dj;X

�; ysÞ.The proposal
densities for generating b�j and dj are multivariate normal.
The resulting acceptance rates are around 30% and 80%,
respectively.

6. SIMULATIONS

We conducted a simulation study using three settings; the
first two are taken from Ombao et al. (2001). The first is a
slowly varying AR(2) process, the second is a piecewise sta-

tionary model, and the third is a time varying AR(6) process.
We generated 200 time series from the slowly varying AR(2)
process and 50 time series from each of the other two pro-
cesses. For all three settings, each time series is of length N ¼
1024, divided into S ¼ 16 segments of size n ¼ 64. The Gibbs
sampler for our model was then run for each time series with
100,000 iterations, including a burn-in period of 20,000 iter-
ations. A run of 100,000 iterations took about an hour on a
3.4 GHz Linux PC, using Fortran 90 code.

6.1 Slowly Varying AR(2) Process

In this simulation setting, 200 realizations are generated
from the model

xt ¼ atxt�1 � 0:81xt�2 þ �t; t ¼ 1; . . .; 1024; ð9Þ
where at ¼ 0.8(1 � 0.5 cos(pt/1024)) and �t ;

iid
Nð0; 1Þ. In this

case, the process is neither piecewise stationary, nor does it have a
dyadic structure. Figure 3 shows a realization of the process (9) and
a plot of at. Note that at changes slowly as a function of t, which
in turn results in a slowly varying spectrum as a function of t.

Figure 4 presents the true time-varying log spectrum of
process (9) on the left, as well as the average of the 200 esti-
mated log spectra, on the right. In this figure, darker shades
correspond to higher power, and time has been rescaled to the
unit interval. Each of these estimated log spectra is obtained as
described in Section 5. We see that our method does a good job,
on average, in estimating the true time-varying spectrum of the
process. Following Ombao et al. (2001), we use the averaged
squared error (ASE) to assess the distance between the true log
spectrum and its estimate. In our notation, ASE is given by

ASE ¼ fNðn=2þ 1Þg�1

3
XN

t¼1

Xn=2

k¼0

log bf ðt=N; nkÞ � log f ðt=N; nkÞ
n o2

; ð10Þ

where f(�, �) is the true time-varying spectrum, and

log bf ðt=N; nkÞ ¼
XS

s¼1

bgsðnkÞ dðt=N; IsÞ;

where bgsðnkÞ the estimate of the log of time-varying spectrum
gs(nk) as discussed in Section 5 and d(t/N, Is) is defined below
(3). The average of the 200 ASE values corresponding to the
200 realizations was 0.261 with a standard deviation of 0.093.
The 10th, 25th, 50th, 75th, and 90th percentiles of the 200 ASE
values were 0.17, 0.20, 0.23, 0.31, and 0.39, respectively.
Figure 5 displays, from left to right, the individual log-spectrum
estimates corresponding to the 10th, 50th, and 90th percentiles
of the 200 ASE values.

To compare our method with the AutoSLEX method pre-
sented in Ombao et al. (2001), we repeated the study using
AutoSLEX. One of the inputs to the AutoSLEX method is the
maximum level of the dyadic segmentation, which determines
the maximum number of segments. In this simulation, we set
the maximum level to 4, which corresponds to segments of size
n ¼ 64. The average of the 200 ASE values in this case was
0.759 with a standard deviation of 0.070. The 10th, 25th, 50th,
75th, and 90th percentiles of the 200 ASE values were 0.68,
0.72, 0.75, 0.80, and 0.84, respectively. (We note that these
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results are in conflict with those reported in Ombao et al. 2001,

however, our results are based on the AutoSLEX Matlab pro-

grams obtained from one of the authors. The calculations of

ASE for our method and for AutoSLEX were performed in an

identical manner.) It is evident that our method shows a sub-

stantial improvement over AutoSLEX.

6.2 Piecewise Stationary Process

Although we assume local stationarity, our technique will
also work in the case that the process is piecewise stationary.
The following is an example of the viability of our method in
this case. In this simulation setting, the time series are gen-
erated from the following model

Figure 4. Left: True time-varying log-spectrum of process (9). Right: Estimated log-spectrum based on averaging the 200 fitted log-spectra.

Figure 3. Top: A realization of the slowly varying AR(2) process given in (9). Bottom: The coefficient at as a function of t for process (9). In
both figures time is rescaled to the unit interval, N ¼ 1,024.

Rosen, Stoffer, and Wood: Local Spectral Analysis 255



xt ¼
0:9xt�1 þ �t if 1 # t # 512
1:69xt�1 � 0:81xt�2 þ �t if 513 # t # 768
1:32xt�1 � 0:81xt�2 þ �t if 769 # t # 1024 ;

8<
:

ð11Þ

where �t ;
iid

Nð0; 1Þ. In model (11), the lengths of the stationary
time series are powers of 2.

Figure 6 shows the true time-varying log spectrum of process
(11) on the left, as well as the average of the 50 estimated log
spectra, on the right. It is clear from Figure 6 that, on average,
our technique provides a good estimate of the true piecewise
spectra in this example.

6.3 Time Varying AR(6) Process

In this example, we generate 50 realizations, each of length
N ¼ 1024, from a time varying autoregressive process of lag 6.
In particular, this process can be expressed as ft(B)xt ¼
�t, et ;

iid
Nð0; 1Þ, where Bmxt ¼ xt–m, and

ftðBÞ ¼ 1� ft1B� . . .� ft6B6: ð12Þ

Assume the characteristic polynomial in (12) has three pairs of
conjugate complex roots ða�1

tj ; a
��1
tj Þ; j ¼ 1, 2, 3, where the

superscript * denotes the complex conjugate, i.e.,

ftðBÞ ¼ ð1� at1BÞð1� a�t1BÞð1� at2BÞð1� a�t2BÞð1� at3BÞ
3 ð1� a�t3BÞ:

To make these roots vary with time, let a�1
tj ¼ Aj expð2piutjÞ;

j ¼ 1, 2, 3, where i ¼
ffiffiffiffiffiffiffi
�1
p

, and let the utjs satisfy

ut1 ¼ 0:05þ ð0:1=ðN � 1ÞÞt
ut2 ¼ 0:25
ut3 ¼ 0:45� ð0:1=ðN � 1ÞÞt;

for t ¼ 1, . . ., N. The values of A1, A2, and A3 are 1.1, 1.12, and
1.1, respectively. The corresponding coefficients, ftj, t¼ 1, . . .,
N, j ¼ 1, . . ., 6 are obtained as the negative coefficients of the
polynomial in (12).

We fitted our method to each of the 50 realizations. Figure 7
presents the true time varying log-spectrum on the left, the
average of the 50 estimated log-spectra in the middle, and an
estimated log-spectrum based on a single realization. From
these plots, it is evident that our method provides good esti-
mates of the true time varying spectrum.

7. APPLICATIONS

In this section we give two examples to illustrate our
methodology. The total number of iterations is 300,000 in the
first example and 400,000 in the second.

7.1 Southern Oscillation Index

In recent years there has been much research and debate on
climate change. One area of research is the El Niño/Southern
Oscillation (ENSO) phenomenon. ENSO is an irregular low-
frequency oscillation between a warm El Niño state and a cold
La Niña state. The SOI is an indicator of the ENSO phenom-
enon and is calculated to be the standardized anomaly of
the mean sea-level pressure difference between Tahiti and
Darwin. The strong El Niños of 1982/83 together with the more

Figure 5. From left to right, individual log-spectrum estimates corresponding to the 10th, 50th, and 90th percentiles of the 200 ASE values for
process (9).
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frequent occurrences of El Niño in recent decades have raised
the question of whether human-induced global warming has
changed the structure of the ENSO time series. (Timmermann
et al. 1999). Trenberth and Hoar (1996) used quarterly stand-
ardized seasonal Sea Level Pressure Anomalies at Darwin
(DSLPA) as an indicator of ENSO and assumed an ARMA(3,1)
model as the data-generating process. They tested explicitly for
a change in the time series from 1981 onwards and found that

given the values of the index from 1882 to 1981, the likelihood
of observing the 1990–1995 ENSO is about 1:3000 years. The
SOI is considered to be a better indicator of ENSO than the
DSLPA (Chen, 1982) and therefore we use this index as our
data.

The data, shown in Figure 8, are monthly values of the SOI
from January 1876 to April 2008 and are available at http://
www.bom.gov.au/climate/current/soihtm1.shtml.

Figure 6. Left: True time-varying log-spectrum of process (11). Right: Estimated log-spectrum based on averaging the 50 fitted log-spectra.

Figure 7. Left: True time-varying log-spectrum of the time-varying AR(6) process described in Section 6.3. Middle: Estimated log-spectrum
based on averaging the 50 fitted log-spectra. Right: Estimated log-spectrum based on a single realization.
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We divided the data into 24 segments, each containing 64
observations (leaving out the first 52 observations), and fitted
our model. We used a uniform prior for the number of com-
ponents in the mixture, with an upper limit of 20 components
[i.e., Pr( j ¼ k) ¼ 0.05 for k ¼ 1, . . ., 20]. Using this prior, our
method estimates Pr( j ¼ 1| y) ¼ 0.75(i.e., the posterior prob-
ability of the time series being stationary is 0.75). To study the
effect of the prior on the posterior distribution of the number of
components, we redid the analysis using a Poisson distribution,
with mean l [i.e., Prð j ¼ kÞ ¼ lke�l=k!] for three different
values of l. The results of this analysis appear in Table 1. This
table shows that a single component has the highest posterior
probability for all priors on the number of components. Even
when l ¼ 5 and hence Pr( j ¼ 1) ¼ 0.03, the posterior proba-
bility is Pr( j ¼ 1| y) ¼ 0.66. This finding is in contrast to
Trenberth and Hoar (1996) who found that the time series is
nonstationary. There are a number of explanations for this
disparity.

The first is that we use the SOI rather than the DSLPA as an
indicator of ENSO. To test if the cause of the difference in
findings was due to using different indicators of ENSO, we
repeated the analysis of Trenberth and Hoar using the SOI data.
As in Trenberth and Hoar (1996), we grouped the monthly data
for the period 1876–1979 into seasons and fitted a parametric
model for the time series using Akaike information criterion
(AIC) as the basis for model selection. Similar to Trenberth and
Hoar, an ARMA(3,1) of the form

yt ¼ f1yt�1 þ f2yt�2 þ f3yt�3 þ u1 et�1; et;Nð0;s2Þ ð13Þ
was the model selected, with parameter estimates f̂1 ¼ 1:303,
f̂2 ¼ �0:2707, f̂3 ¼ �:1876, u1 ¼ � 0.7524, and ŝ2 ¼ 49. In
(13) yt is the average of the SOI for the three months in season t.

This model was then used to generate 1,000,000 years of data.
Trenberth and Hoar focused on the period December 1989–
May 1995, where 22 successive positive anomalies with a
median of 0.94 mb were recorded, and asked the question ‘‘If
the ARMA(3,1) model is the true model, how likely is it that
we observe 22 successive negative DSLPA, and how likely is it
that we observe a median value of 0.94 mb for any 22 season
period?’’ The answers to these questions were about 2 in 8,000
years and 1 in 3,000 years, respectively. From this they con-
cluded that the time series structure of the DSLPA had
changed. Repeating the same analysis for the SOI data, we
obtained the distribution of run lengths of either sign, see
Figure 9. Our results are of a similar order of magnitude to
those computed by Trenberth and Hoar, but comparison is
difficult because the maximum run length for the SOI data were
only 11, not 22. However, except for one slightly positive SOI
(0.20 for December, January, and February in 92/93), the
maximum run length would have been 17. The frequencies
of observing run lengths of 11, 17, 22, or greater appear in

Figure 8. Monthly values of the SOI from January 1876 to April 2008.

Table 1. Posterior probabilities of the number of components in the
model fitted to the SOI data as a function of the prior distribution

Number of
components

Prior

Uniform Poisson

P( j ¼ k) ¼ 0.05 l ¼ 1 l ¼ 2 l ¼ 5

1 0.755 0.94 0.75 0.66
2 0.241 0.06 0.24 0.33
3 0.004 0.00 0.01 0.01
4 0.000 0.00 0.00 0.00
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Table 2. This table shows that the estimated frequencies of
events are very similar for both the SOI and the DSLPA, which
is not surprising given that the ARMA(3,1) estimated for the
SOI is very similar to the ARMA(3,1) process estimated for the
DSLPA (Trenberth and Hoar, 1996). However, different con-
clusions would be reached because the behavior of the SOI for
the period in question (i.e., December 1989–May 1995), is
different from the behavior of the DSLPA in the same period. A
similar picture emerges for the test of the 22 season median
value. The median value of the SOI from December 1989 to
May 1995 was �7.5. Using the data-generating model given in
(13), we computed that a 22 season median of �7.5 could be
expected to happen about once in 130 years, a very different
value from once in 3,000 years.

There are a number of other differences in our analysis of the
ENSO effect. Trenberth and Hoar (1996) assumed an
ARMA(3,1) model for the data-generating process, whereas
the method presented in this article models changes in the
frequency domain to avoid assuming a particular parametric
model.

Another explanation is that Trenberth and Hoar (1996) tested
explicitly if there had been a change from 1981 onward. In our
model, explicitly testing for a difference in the SOI from 1981
onward is equivalent to assuming a priori that in a mixture of
two components, p12s ¼ 1 for segments s corresponding to
time periods before 1981 and p12s¼ 0, otherwise. In effect, the
uncertainty surrounding the number and location of change
points has been ignored by Trenberth and Hoar (1996). In
contrast, our methodology makes no assumptions regarding the
location and number of any possible nonstationarity, and our
estimate of Prðj ¼ 1jyÞ integrates out the uncertainty regarding
both the mixing function p and the number of possible change
points.

A plot of the estimate of the log power together with 95%
posterior intervals appears in Figure 10. Figure 10 shows a peak
at about n ¼ 0.02, which corresponds to a 48 month (4 year)

cycle. We note that in our analysis, by modeling the evolution
of the log spectra, we are modeling the evolution of the second
moment. It may be that the SOI is a nonstationary process but
the nonstationarity is apparent only in higher-order moments.

7.2 Earthquakes and Explosions

In this section we illustrate our methodology with seismic
traces of an earthquake and a mining explosion taken from
Shumway and Stoffer (2006). These data were measured at a
recording station in Scandinavia, and are each of length 2048.
Figures 11 and 12 show the data along with their estimated log
spectrum. These particular time series both consist of two
waves, the compression wave, also known as primary or P
wave, which is the start of the series and the shear, or S wave,
which arrives at the midpoint of the series. The delay between
the arrival of the P wave and the arrival of the S wave is used to
get a quick and reasonably accurate estimate of the location of
the event. The analysis of such seismic data is one of critical
importance for monitoring a comprehensive test-ban treaty. As
argued by many authors [e.g., Shumway and Stoffer (2006,
Chap. 7)], distinguishing between the seismic traces of earth-
quakes and explosions is best accomplished in the frequency
domain. Hence, two problems are of interest in this analysis.
The first one is to identify the arrival of the S wave, and the
second problem is to estimate the time-varying spectrum of the

Figure 9. Distribution of the number of runs for simulated values of the SOI assuming an ARMA(3,1) process is the correct model.

Table 2. Frequency of occurrence of length of a run in SOI

Run length

Data

SOI DSLPA

>11 1 in 47 years 1 in 55 years
>17 1 in 800 years 1 in 910 years
>22 1 in 9,200 years 1 in 8,600 years
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process to distinguish between the seismic traces of explosions
and earthquakes.

To illustrate our method, we fitted the mixture model to both
time series after dividing them into 32 segments of 64 obser-
vations each and computing the corresponding log periodo-
grams. The Gibbs sampler was run for 400,000 iterations with a
burn-in period of 200,000 iterations. Table 3 presents the
posterior probabilities of the number of components for the two
time series. The S component for the earthquake shows power
at the low frequencies only, and the power remains strong for a
long time. In contrast, the explosion shows power at higher

frequencies than the earthquake, and the power of the signals (P
and S waves) does not last as long as in the case of the earth-
quake. Although the estimated time-varying spectra are qual-
itatively similar to those considered in Shumway and Stoffer
(2006, chap. 4 and 7), the additional information contained in
the number of components needed to estimate the time-varying
spectrum of each seismic trace, as expressed in Table 3, may
add a new dimension with which to discriminate between
earthquakes and explosions.

APPENDIX: DETAILS OF THE SAMPLING SCHEME

First initialize the number of components, j. Conditional on
this value, initialize the indicators, gsrj, for s¼ 1, . . ., S and r¼
1, . . . , j and uj ¼ ðb�

0

j ; t9j; d9j Þ0, where b�j ¼ ða01;b91j; . . . ;

a0j;b9jjÞ0, tj ¼ ðt2
1j; . . .; t2

jjÞ
0, and dj ¼ ðd92j; . . . ; d9jjÞ0. Note that

u1 ¼ ðb�
0

11; t
2
11Þ
0.

1. Moving Between Models.
Let jc and jp be the current and proposed number of com-
ponents in the model, respectively. Let uc and up be the
corresponding parameter values (i.e., uc ¼ ujc and up ¼ ujp ).
Let Vc ¼ ( jc, uc) and Vp ¼ ( jp, up).
Using a proposal density q(Vc, Vp), we draw Vp from
PðVpj~yÞ as follows.

(1) If 1 < jc < J, propose a value for jp with transition
probability q( jc! jp ¼ jc 6 1) ¼ 0.5. If jc ¼ 1, then q( jc

! jp ¼ 2) ¼ 1, and if jc ¼ J, then q( jc! jp ¼ j � 1) ¼ 1.
(2) If jp ¼ jc þ 1, then up ¼ ðb�0jc ;b

�0
j pj p ; t9jc ; t

2
j pj p ; d9jc ;

d9j pj pÞ0, where djpjp , t2
j pjp , and b�j pj p are generated as fol-

lows.

(a) Draw djpjp from Nð0;s2
dI2Þ:

(b) Draw t2
j pj p from Uð0; t2

jcjcÞ:

Figure 10. Estimated log spectrum (solid line) and 95% posterior
intervals (dashed line) against frequency for monthly values of the
SOI from June 1878 to May 2006.

Figure 11. (a) The earthquake time series and (b) its estimated time-varying log spectrum.
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(c) Draw aj pj p from Nð0;s2
aÞ:

(d) Draw bjpjp from Nð0; t2
jpjp � IkÞ, where k is the

number of basis functions.
(e) Accept the proposed parameter values with proba-
bility

� ¼ min 1;
PðVpj~yÞqðVp;VcÞ
PðVcj~yÞqðVc;VpÞ

� �
ðA:1Þ

(3) If jp ¼ jc � 1, then

(a) up ¼ ujc�1

(b) Accept the proposed parameter values with proba-
bility (A.1).

2. Updating Within a Model
Given the new values of j and uj, the model parameters are
updated as follows.

(1) If j > 1, then
(a) Let gsj ¼ r if gsrj ¼ 1. Generate component indi-

cators gsj, s ¼ 1, . . ., S, from

pðgsj ¼ rjb�j ; dj;X
�; ysÞ

¼ prjspðysjX�;b�rjÞ=
Xj

h¼1

phjspðysjX�;b�hjÞ ; ðA:2Þ

where

PðysjX�;b�Þ } exp
�

ys;0�m0

2 � 1
2 expðys;0 � m0Þ

�
3 exp

ys;n=2�mn=2

2 � 1
2 expðys;n=2 � mn=2Þ

� �
3
Qn=2�1

k¼1 exp ys;k � mk � expðys;k � mkÞ
� 	

ðA:3Þ

and mk is the kth element of X�b�.
(b) Generate dj from p(dj | gj, U) via a Metropolis-Hastings
step. The conditional posterior distribution of dj is

pðdjjgj;UÞ } pðdjÞ
QS
s¼1

Qj
r¼1

p
gsrj

rjs

¼ pðdjÞ
QS
s¼1

Qj
r¼1

expðd9rjusÞPj

h¼1
expðd9hjusÞ


 �gsrj

:

ðA:4Þ

The proposal density is Nðdmax
j ;SdÞ, where dmax

j is the value
of dj maximizing p(dj|gj, U) in (A. 4), and Sd ¼

�@
2 log pðdjjgj;UÞ

@dj@d9j
j dj¼dmax

j

n o�1

:

(2) For any j:
(a) Generate b�j from its conditional posterior dis-
tribution

pðb�j jtj;gj;X
�; ~yÞ ¼ pðb�j Þ

QS
s¼1

Qj
r¼1 pðysjX�;b�rjÞ

gsrj

¼
QS

s¼1

Qj
r¼1 pðb�rjÞpðysjX�;b�rjÞ

gsrj

ðA:5Þ
as follows. For r ¼ 1, . . ., j:
Generate the vector b�rj via a Metropolis-Hastings step. The
conditional posterior distribution of b�rj is

Figure 12. (a) The explosion time series and (b) its estimated time-varying log spectrum.

Table 3. Posterior probabilities of the number of components

No. of components Earthquake Explosion

1 0.000 0.000
2 0.960 0.098
3 0.040 0.700
4 0.000 0.193

>5 0.000 0.009
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pðb�rjjt2
rj;gj;X

�; ~yÞ ¼ pðb�rjÞ
YS

s¼1

pðysjX�;b�rjÞ
gsrj :

The proposal density is Nðb�max
rj ;Sb�rj

Þ, where b�max
rj ¼

arg maxb�rj
pðb�rjjt2

rj;gj;X
�; ~yÞ and Sb�rj

¼ f�ð@2 log pðb�rjjt2
rj;

gj;X
�; ~yÞÞ=@b�rj@b�rjjb�rj¼b�max

rj
g�1.

(b) Generate tj from pðtjjbj; ~yÞ ¼ pðtjjbjÞ, such that

t2
1j $ t2

2j $ � � � $ t2
jj: Note that pðt2

rjjbrjÞ ¼ IG

ððk=2Þ; ð1=2Þb9rjbrjÞ, where k is the number of basis

functions.

[Received July 2007. Revised July 2008.]
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