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Abstract 

The concept of a spectral envelope for exploring the periodic nature of real-valued time series 
is introduced. This concept follows naturally from the data-dependent approach proposed by 
Stoffer et al. (1993) for spectral analysis and scaling of categorical processes. Here, the notion 
of the spectral envelope is applied in the context of transformations of a time series, and a data- 
dependent approach for selecting optimal transformations is proposed. These transformations help 
emphasize periodicities that may exist in the real-valued process. The definition of the spectral 
envelope is also extended to include multivariate time series. Several examples are used to 
illustrate the application of this methodology and asymptotic properties of the procedure are 
established. 

A M S  classification: 62M15 
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I. Introduction 

In recent work, Stoffer et al. (1993) discuss the frequency domain analysis o f  cate- 
gorical time series and introduce a concept called the spectral envelope of  a categorical 

time series. They note that the obvious approach to exploring the periodic nature of  a 

categorical process is to assign numerical values to each of  the categories followed by 

a spectral analysis o f  the resulting discrete-valued time series. The resulting spectrum 

however, will depend upon the particular values chosen for the categories. Thus, rather 

than choose arbitrary values, Stoffer et al. (1993) propose a data-dependent approach 
based on the spectral envelope for selecting values which help emphasize any periodic 

features that may exist in the categorical process. An application o f  this methodology 
to a problem involving DNA data is given in Stoffer et al. (1993). 
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Similar arguments can be made for real-valued series. In exploring the periodic 
nature of a real-valued process, one can consider the spectral analysis of not only 
the original time series, but also of transformations of  the time series. The spectrum 
of a transformed time series will depend on the particular transformation. Bloomfield 
(1976) notes that simple power transformations can sometimes be used to make a time 

series more closely sinusoidal and hence the resulting spectrum easier to interpret than 
that of the original process. Again, rather than arbitrarily choosing a transformation, 
we propose in the next section a data-dependent approach for selecting transformations 
which help emphasize any periodic features that may exist in the real-valued process. 
This data-dependent approach for real-valued series is based on an extension of the 

spectral envelope methodology developed in Stoffer et al. (1993). The definition of the 
spectral envelope can be extended to include multivariate time series as we also show 
in the next section. 

The paper is organized as follows. In the next section, we define the spectral envelope 
and discuss its use in finding interesting real-valued transformations for univariate or 
multivariate time series. We also discuss the construction of the spectral envelope and 

note a relationship between the spectral envelope and Brillinger's (1981) principal 
components analysis of  a multivariate time series. In Section 3, we discuss estimation 
of the spectral envelope and present some asymptotic results. Most of  the asymptotic 
results follow readily from the results given in Stoffer et al. (1993). Applications of 

the spectral envelope and data-dependent transformations are presented in Section 4. 
Three of the examples involve real data, including one in which a multivariate time 
series is examined. We conclude with some final comments in Section 5. 

2. The spectral envelope 

Let Xt, t = 0, + 1, -1-2 . . . . .  be a stationary time series and consider some real-valued 

transformation of the time series g(Xt). Our goal here is to find transformations from 
some class f¢ so that the resulting spectral density is in some sense most informative. 
The approach we take is to first consider a given frequency - n  < co ~< n, and observe 

that the transformation of the time series which best emphasizes the frequency ~ is 
that in which the resulting normalized spectral density fo (m) /a  2 is largest at co. Here, 
fg(Cg) represents the spectral density of  g(Xt) and a 2 = f fg(co)d~o is the total power 
of  g(Xt). We then propose looking at the frequencies and the corresponding transfor- 
mations for which fg(~) /ag is relatively large. Note that if  the sequence Xt is iid with 
finite variance, also referred to as (pure or strict) white noise, then fg(~o)/a2g = 1/2n 
since g(Xt) will also be white noise, and so no frequency or transformation 'stands out'. 

The above idea leads naturally to the notion of the "spectral envelope" given below. 
This approach is applicable to multivariate time series as well as univariate, and so we 
formally introduce a general definition of the spectral envelope. 

Definition 2.1. Let At, t = 0, +1, -t-2 . . . . .  be a time series on EP and let f~ be a class 
of  transformations from ~P to R such that for any g Ef¢, the spectral density fq(og) 
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of g(Xt) exists. The spectral  envelope of Xt with respect to aj, is defined to be 

2(~o) = s u p { f a ( ( o ) / a 2 } ,  - n  < o9 <~ n. 
g@(6 

The quantity 2((o)d~o represents the largest proportion of total power that can be 
attributed to the frequencies ~9 d~  for any  transformation within the class f#. We refer 
to the transformation g Ef¢ at which the supremum is obtained as the opt imal  transfor- 
mation at ~ with respect to the class ft. The name 'spectral envelope' is appropriate 
since the graph of 2((o) defines an upper bound or 'envelope' for all the normal- 
ized spectra associated with the class f#. That is, fq(~o)/a2g <~ 2(~)  with equality being 

obtained at the optimal transformation. The optimal transformation is not the same for 
all ~. As will be seen in the examples in Section 4, different transformations may 

help emphasize different frequencies. If  ~ is white noise then 2((0) = ~nl and any 
transformation would by default satisfy the definition of an optimal transformation. 

In Definition 2.1 we do not specifically require that ~ be a weakly stationary time 
series since the existence of 2(~o) only depends on the transformed time series possess- 
ing spectral densities. In practice, simple non-instantaneous transformations are often 
used to induce stationarity in a time series; the growth rate V l o g ~  for example, 
is a standard type of transformation employed in economics. To be able to include 

such cases, Definition 2.1 can be applied to the vector process Yt = (Xlt,X'2t . . . . .  Xpt)  ~ 

where the components Xjt are judiciously choosen. Thus, the implicit instantaneous 
form of Definition 2.1 is not as restrictive as it might first seem. 

In general, using Definition 2.1 directly to construct a spectral envelope is compli- 
cated since we need to take the supremum over a class of  functions for each frequency. 
However, if ff corresponds to a finite-dimensional vector space, then we show below 

that finding the supremum reduces to a finite-dimensional eigenvalue problem for each 
frequency. In particular, we note a special case of  this situation is where Xt is a cate- 

gorical series with k states. Here, assigning all possible numerical values to the states 
corresponds to the class of  transformations ~ represented by all real-valued functions 
on the set {1,2 , . . . ,k} .  Alternatively, an orthogonal basis for fq can be employed by 
setting the gj (Xt )  that appear in (2.1) below, to be the indicator functions for {At E 
state j}. Using the definition of the spectral envelope with respect to f# is then seen to 
be consistent with the definition of the spectral envelope given in Stoffer et al. (1993) 
for categorical time series. While there exists a natural choice of fq for categorical 

series, this is not the case with real-valued series and we shall return to this issue 
following the examples presented in Section 4. 

Henceforth, we assume that f¢ is a k-dimensional vector space. As such, there exists 
a set of  basis functions {gl . . . . .  gk} such that for any g E 

g ( g t )  ~-- f l l g l ( g t )  -]- • • • ~-  flkgk(Xt). ( 2 . 1 )  

Since fq is fixed, (2.1) may be represented as 

Xt( f l )  = fl¢Yt, (2.2) 
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where Yt is the vector process 

Y, = ( g l ( X , )  . . . . .  g k ( x , ) )  ¢ (2.3) 

and fl = (ill . . . . .  ilk) ~ E ~k. I f  the basis vector Yt is assumed to possess a continuous 
spectral density, f (09)  say, then Xt(fl) will have a continuous spectral density f(09; fl) 
for all fl C ~k. Moreover, (2.2) implies that 

and 

f~(09) -- f(09; fl) = f l~f(09)fl  

a~ --- Var[Xt(fl)] =/~¢V/~, 

where 

V = Var(Yt) = f(09)d09 

is the total power of  ~ .  Thus, the spectral envelope over N is well-defined and can 
be expressed as 

2(09) = sup{f l~f(09)f l / f lrVf l} ,  - i t  < 09 ~< rt, (2.4) 
/3E~ 

where ~ = {/3 1V/ /#  0}. 
The problem of  obtaining 2(09) is simplified by the fact that only real-valued scalings 

are considered. Let fre(09) denote the real part o f  f(09).  Since f(09)  is Hermitian, 
fl~f(09)/~ = fl~fre(09)/3 for all fl 6 •k, and so (2.4) may be replaced by 

2(09) = sup{f l~fre(09)f l / j~Vfl} ,  - ~  < 09 <~ re. 

In addition, fr¢(_09) = fr¢(09) implies that 2(09) is symmetric so it suffices to consider 
2(09) on 0 ~< 09 ~< n. The relationship between 2(09) and the optimal linear coefficients 

fl(09) can also be defined as the largest scalar 2(09) such that for some fl(09), with 

v/~(09) # 0, 

fre(09)/~(09) = 2(09)Vfl(09). (2.5) 

When V has full rank, the supremum is over all /3 ¢ 0 and it follows that 2(09) is the 
largest eigenvalue associated with the determinantal equation 

i f  re(09) _ 2V[ = 0. (2.6) 

The assumption that V has full rank is essentially a costless one since in order for V 
to be singular, we must have c~Yt = 0 a.s. for some ~ # 0. This would imply that 
one (or more)  of  the components of  Yt is identically equal to zero, or there exists an 
exac t  linear dependency between the components of  Yr. In either case, the dimension 
of  f# can be reduced without any loss of  information. 
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When Xt = (Xlt,X2t . . . . .  Xpt) ~ is a multivariate time series, one class of  transfor- 
mations of interest are linear combinations of  Xt. In Tiao et al. (1993) for example, 

linear transformations are used in a time domain approach to investigate dynamic and 

contemporaneous relationships among the components of a multivariate time series. In 
the context of  a spectral envelope analysis, this class forms a k-dimensional vector 
space of transformations and a natural choice of  basis functions are the k components 
themselves; that is, Yt = Xt in (2.2). In this case, the spectral envelope has an in- 
teresting relationship to the principal components analysis of multivariate time series 
which is discussed in Brillinger (1981). If  we take a multivariate time series and 

standardize it so the total power is the identity matrix, then Brillinger's first princi- 
pal component spectrum would correspond to 2(co) in (2.5), but with fre(co) replaced 
by f(co). Alternatively, the same result would be obtained if we allow for complex 
linear combinations in our definition of the spectral envelope. In this case, the com- 

plex linear combination corresponds to the instantaneous transfer function associated 
with 2(09). Thus, a spectral envelope interpretation can be given to Brillinger's first 
principal component spectrum which also corresponds to the best rank one filtering of 
the multivariate time series. 

3. Estimation of the spectral envelope 

To apply the spectral envelope procedure in practice, 2(co) needs to be estimated 
from the observed data and this can be effected by replacing f(co) in (2.4) by a spectral 
estimate, fr(co),  computed from Yt, t = 0, 1 . . . . .  T - 1. The periodogram 

1 ~ l  2 
= Yt exp{-icot)  , -~z < co ~< rt (3.1) IT(co) ~ t=0 

provides a simple estimate of f(co)  and in this case we refer to the resulting 2z(co) 
as the sample spectral envelope estimate, and 3~(co) as the sample scalings. Note that 
It(co) may also be expressed as 

T 1 

It(co) = (2rET)-ldr(co)d*(co), dr(co) = ~_, Ytexp{- icot} ,  
t--O 

where dy(co) is the finite Fourier transform of Yt with * denoting conjugation with 
transposition. Alternatively, a smoothed periodogram estimate or a consistent spectral 
window estimate for f(co)  can be used to obtain 2r(co) and 3r(co)- 

The theory for estimating the spectral density of a vector process is well estab- 
lished (Brillinger, 1981; Hannan, 1970; Rosenblatt, 1959), and can be applied to f(co) 
corresponding to the basis vector (2.3). However, in order that certain assumptions 
he satisfied by the Yt process, we shall first need to place some restrictions on the 
transformations used to construct Yr. To motivate these restrictions, we reconsider 
the transformation (2.1) associated with f# = {91 . . . . .  gk} which is repeated here, for 
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convenience, 

g(Xt ) =/31gl(Xt)  + " "  +/3kgk(X~). 

A sufficient condition for the spectrum of  g(Xt) to be bounded and uniformly con- 
tinuous is that y ]  ]zo(r)] < c¢ where ~g(r) = Cov[g(Xt) ,g(Xt-r)] .  This implies that 
the individual autocovariances associated with each 9j(Xt) and the cross-covariances 
between any pair of  basis functions in f#, must also satisfy the summability condition. 

That is, ~ liE(r)[ t < oc where 

r(r) = [ C o v [ g i ( X t ) , g A X t _ r ) ] ] ,  i , j  = 1 . . . . .  k, r = 0 ,+1  . . . .  (3.2) 

is the k × k autocovariance matrix associated with ft. As mentioned previously we 

may take E[gi(Xt)] = 0 without loss of  generality since the spectral density of  g(Xt) 

is identical to that of  g(Xt) - / 3 o  except at the zero frequency which is not used in 
computing 2r(~o). This implies that none of  the basis transformations can be a constant 
function of  Xt and we shall also assume that Var[Yt] has full rank. 

We should point out that the lack of  linear independence does not preclude the use of  
the spectral envelope procedure since 2(~o) can be defined as in (2.5). Computationally 
however, it is more convenient to introduce a constraint matrix A such that A¢VA is 
positive definite o f  r ankr  and A~A = Ir. Then 2(<.o) can be defined as the largest 
eigenvalue of  the determinantal equation 

IA~ fre(og)A - 2A~VAI = 0, 

where 2 ( o )  does not depend on the choice of  A. Although the corresponding eigen- 
vector, b ( o )  say, does depend on A, the equivalence class of  scalings associated 
with /3(~o) = Ab(og) does not depend on A. In the categorical case considered by 
Stoffer et al. (1993), the need for a constraint matrix arose naturally from the multi- 
nomial form of  Yr. In summary then, the above conditions on f¢ may be formally 
written as follows. 

Condition A. For a stationary time series Xt, t = 0,4-1 . . . . .  let f# = {gl . . . . .  gk} 

denote a vector space of  a.e. continuous real-valued zero-mean transformations of  Xt, 
satisfying 

(a) ~ IIr(r)ll < ~ where F(r )  is given by (3.2), 
(b) F(0)  is strictly positive definite. 

To allow for the application of  a general theory in obtaining asymptotic distributions 
for the estimates of  the spectral density f(~o),  it will be necessary to impose further 
assumptions on the Yt process. These conditions could certainly be relaxed but we do 
not pursue that issue here. Rather than introduce excessive notation we simply state 
the assumptions as follows. 
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Condition B. In addition to Condition A, Xt is assumed to be strictly stationary and 

the fourth-order cumulant spectrum exists for all g E ft. 

Under Condition B it follows from Doob (1953) that Y~ will be a strictly station- 
ary process and possesses a fourth-order cumulant spectrum. The second part of  these 
conditions may be contrasted with the categorical case treated in Stoffer et al. (1993) 
where it was costless to assume all cumulant spectra exist. This distinction for real- 
valued series is necessary since we intend to accommodate nonlinear processes, such 

as the bilinear model presented in the next section, within the framework of the spec- 
tral envelope methodology. In the case of a bilinear process for example, it can be 
shown that E[Xt m] does not exist for m sufficiently large (Tong, 1990; Granger and 

Anderson, 1978). However, the above assumption is sufficient for the conclusions we 
shall require about fr(co) which are comprehensively treated in Hannan (1970). The 
results obtained by Stoffer et al. (1993) for the categorical case will therefore be 

applicable to the real-valued case, subject to the above conditions being satisfied. 
Before considering these results it is worth noting that the approach we have adopted 

here avoids the need to deal specifically with the Xt process. The problem with non- 
linear transformations of a random process is that there does not exist a systematic 

theory comparable to that associated with linear systems which would make an analyt- 
ical treatment exceedingly complex. An illuminating discussion for the case where Xt is 
Gaussian is given in Hannan (1970, II, Section 7). 

Following Stoffer et al. (1993) we may now define 2v(co), without loss of generality, 
to be the largest eigenvalue of h~(co) where 

hv(co) = Vv-1/2 fv(co)v~-l/a 

and Vv is the sample covariance matrix of Yt, t = 0, 1 . . . . .  T -  1 constructed from 
{gl . . . . .  gk} which satisfy Condition A. The scaling fir(co) is then defined by Vrl/zflv(co) 
which is the eigenvector of h~(co) associated with 2v(co). We shall take fir(co) to be 
the normalized scaling satisfying fly(co) ~ VrflT(CO) = 1, with the first non-zero entry of 
V~/2flr(co) being positive. In the results presented below, all limiting statements are 

taken as T ---+ oo and the distinct frequencies coj, j = 1 . . . . .  J associated with fr(co) 
are assumed to be in the interval (0, n]. Let W(p,  v, S )  denote the Wishart distribution 
of dimension p with v degrees of freedom and p x p covariance parameter S. Similarly, 
the notation W~(p, v, S)  refers to the complex Wishart distribution. 

We first consider the case where the periodogram Iv(co) defined in (3.1) is used as 
the spectral estimate for f(co) and Yt satisfies Condition B. Then from Hannan (1970) 
we have 

Lemma 3.1. Under the established conditions on Yt and if, Ir(coj), j = 1 . . . . .  J con- 
verge in distribution to independent We[k, 1,f(coj)], j = 1 . . . . .  J.  

This lemma enables the asymptotic distributions of sample estimates 27-(co) and 
fir(co) to be obtained by noting that eigenvalues and eigenvectors are continuous func- 
tions of  a matrix argument a.e. with respect to Lebesgue measure. 
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Theorem 3.1. Under the established conditions on Yt and f~ the collection 

{2T(OOj),flr(COj)} ~ {2j, Uj}, j = 1 . . . . .  J, 

where vj = V-~/2uj and {2j, uj}, j = 1 . . . . .  J are the largest eigenvalue and eigen- 
vector o f  independent w're[kc L , 1,h(coj)] matrices j = 1, . . .  ,J, with uj normalized so that 

u~, uj = 1 and the first non-zero entry o f  uj is positive. 

Of particular interest is the case where Xt (and hence Yt) is white noise. 

Theorem 3.2. Under the established conditions on Yt and f¢, and i f  in addition Xt is 
white noise, then the collection 

2 r ( o ) j ) L 2 j ,  j =  1 . . . . .  J, 

where the 2j are iid with 

P[2~z21 < x] = P[zZk < 4x] - rt~/2x(k-1)/2 exp(-x)P[z~ < 2x]/V(k/2) (3.3) 

for  O < x < cc. 

The proof of this result follows immediately from that given in Stoffer et al. (1993, 
Theorem 3.2) and provides us with an asymptotic test which can be used to assess the 
significance of peaks in the sample spectral envelope plot. 

The asymptotic distributions of 2T(~o) and fir(co) can also be derived when alterna- 
tive estimators for f(co)  are used, such as the smoothed periodogram estimate 

(2 s) 
f r ( o ) ) = ( 2 m +  l)  -1 Iv c o + - -  (3.4) 

S ~  - - m  

or a consistent spectral window estimate 

= Wr co --  IT , (3.5) 
f r ( ~ )  --T- s=l 

OO where Wr(~) = B-~ 1 Y'~j=_~ W(B~I(~+21t j ) )  and W(~) is a spectral window function 

satisfying f _ ~  W(a)d~ = 1, f~oo ]W(~)ld~ < oo. The bandwidth parameter Br is 
assumed to satisfy the conditions Br ---, 0, B r T  -+ c~ as T --+ oo. It will also be 
convenient to define the normalization constant 

v r = ( B r T ) l / 2 { g r t . I _  ~°~ W(~)2 d~} 1/2 . (3.6) 

For the smoothed periodogram estimate given in (3.4), all the previous results hold 
with minor modification. In Lemma 3.1, f r (o) )  and W~[k,2m + 1, f (o) j )] / (2m + 1) 
replace/r(o)) and W~[k, 1,f(coj)] with the analogous adjustment in Theorem 3.1. Sim- 
ilarly, Theorem 3.2 also holds with fr(a~), but the distribution of 2,t2] is that of the 
largest root of a W(k, 4m + 2,Ik)/(2m + 1 ) matrix which differs from the relationship 
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given by (3.3). For a discussion of the largest root of  a W(p,V, Ip) matrix we refer 

the reader to Muirhead (1982). The situation for (3.5) however, is more complicated 
and depends on whether the largest root of hre(ooj) is distinct or not. For the case 

where the largest root of  hre(ooj) is distinct we have from Stoffer et al. (1993) and 
Hannan (1970): 

Theorem 3.3. Under the established conditions on Yt and f# with fr(co) defined 
by (3.5), then provided the largest root o f  hr¢(ogj) is distinct for  each j = 1 . . . . .  J, 

J, 

where Vr is defined as in (3.6) and zj, yj  being independent for j = 1 . . . . .  J. Further- 
more, for  each j = 1 . . . . .  J, zj ~ N(0, 1) and is independent from yj which is multi- 
variate normal with mean O. The variance o f  v - l /2y j  is given by 

{2(~oj )H(ooj )+ hre(foj )H(~oj )+ - a(ooj )a(~oj )~ }/2, (3.7) 

where H ( ~ j )  = hr¢(ogj) - 2(ogj)h,_l, a(ogj) = H(ogj)+him(ogj)V1/2fl(ooj) and H(ooj) + 
refers to the Moore-Penrose inverse o f  H(~oj). 

The proof of this result follows that given in Stoffer et al. (1993, Appendix) and 
enables asymptotic normal confidence intervals and tests for 2(0~) to be constructed. 
Similarly, asymptotic confidence ellipsoids and chi-square tests can also be constructed 
for /3r(co) using Theorem 3.3. As shown in the above reference, a simpler but more 

conservative asymptotic test can be constructed by omitting the a(~o) term in (3.7). 
Specifically, under the conditions of  Theorem 3.3, 

2vr {2r(~o)-lfl(~oj)~f~e(eo)fl(to) + 2T(CO)fl(O~j)~VTf~.e(o~) -1VTfl(tO) -- 2} (3.8) 

converges in distribution to a distribution which is stochastically bounded between 
a Z 2k-2 and g~-i distribution. 

Lastly, all the above results may be extended to the case where Xt is a vector process, 
with minor modification. In particular, we require that no two components of Xt are 
stochastically identical for all t, and that the product space J / / =  ffl × " "  x ffk satisfy 
Condition A. 

4. Applications 

Example 1. Let Xt satisfy the bilinear model 

St  = °~/:t-lYt-2 -~- gt, 

where et is an unobserved iid sequence with E[et] = 0 and E[e 2] = cr 2. This particular 
example is treated in detail in Granger and Andersen (1978) and permits a stationary 
solution when c¢2a 2 < 1. As is easily verified, Xt is an uncorrelated sequence and hence 
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has all the appearance of a second-order white noise process. However, it can be shown 
that Xt 2 has the same autocorrelation structure as that of an identifiable ARMA(2,1) 
model which clearly distinguishes Xt from pure white noise. 

It is instructive then to evaluate the spectral envelope procedure with respect to 
ff = {x, x2}. From Granger and Andersen (1978) we note that Xt and X 7 are uncorre- 
lated and thus, 

V = Var[(Xt,X2) ~ ] = diag(ax 2, ~r~), 

f(o~) = fre(og) = (2~z)-ldiag(ax 2, a2lk(to)] 2) 

which exist provided ~4E[e4] < l. Here k(~o) denotes the transfer function ofXt 2 which 
has the form of an identifiable ARMA(2,1) process as indicated above. From (2.6) it 
follows that the spectral envelope is given by 

2r~2(c0) = max(l ,  Ik(09)l 2) 

which is a non-constant function of ~0 since k(09) ~ 1 for all co. This implies ]k(09)] 2 > 1 

over some non-empty subset of  (-~,rc]  so that a graph of 2(~)  would also dis- 
tinguish Xt from pure white noise. In addition, the optimal scaling associated with 
]k(~)l 2 > 1 is fl(09) = (0, 1) ~ which identifies X~ as the source of the correlation. 

The above example provides a useful insight into the situation where the Xt are 

'residuals' obtained from some modeling procedure. I f  the fitted model is appropriate 
then the residuals should exhibit properties similar to a white noise process. Although 
departures of  the data from the fitted model may suggest model mis-specification, non- 
Gaussian data or the existence of a non-linear structure, the spectral envelope provides 
a simple diagnostic technique that would be useful for this type of residual analysis. 
This approach is pursued with a real data set in the next example. 

Example 2. Here, we consider quarterly US GNP from 1947(1)-1991(1). The se- 
ries was obtained from the Citibase database and is seasonally adjusted. After fitting 
an MA(2) model to the growth rate series, the residual ACF/PACF correlograms, 
Portmanteau test and spectrum estimate all indicated white noise residuals which we 

shall denote as Xt. Following the approach of Example 1, the absolute value and square 
transformations were applied to Xt and a spectral envelope estimate based on (3.4) with 
m = 5, was computed with respect to ~ = {x, ]x[,x2}. 

As can be seen from Fig. 1, there is a noticeable concentration of spectral power 
at the low-frequency end of the spectral envelope graph. Theorem 3.3 was applied 
to obtain an approximate 95% confidence interval about the first fundamental (o~1 = 
0.006). The lower threshold of this interval was 0.027 which is about twice the baseline 
level. A possible explanation for the presence of this significant low-frequency power 
follows from Tiao and Tsay (1994), who investigated this growth rate series by fitting 
a nonlinear Threshold AR(2) model. Their results are interesting and indicate that the 
growth rate behaves differently during periods of  contraction and expansion. Using a 
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Fig. I. Spectral envelope for GNP residuals ~ = (x, ]x],x 2), T = 176. Smoothed periodogram (m - 5) based 
estimate. 

finer division of these regimes, the model was able to identify the 6 periods since 1947 
that have been classified as economic recessions. 

The presence of spectral power at very low frequency in detrended economic series 
is also interesting in terms of long-range dependence and our choice of  transformations 
above, was partly influenced by the recent work of Ding et al. (1993), who applied 
transformations of  the form ]Xtl d, d E (0, 3], to the S&P 500 stock market series. In 
Fig. 2, the optimal transformation corresponding to o) 1 is shown. Here, it can be seen 
that while the low-frequency power is primarily due to the absolute value transforma- 
tion, it has been modified by the square transformation. The square transformation also 

provides a dampening effect of  two extreme residuals. These correspond to the values 
at t = 12 and t = 133 which were noted as possible outliers in Tiao and Tsay (1994) 
although their magnitudes are not substantial. 

We conclude this example with an interesting footnote which concerns the deter- 
ministic drift component that was included in the MA(2) fitted model. Given that the 
original data was differenced, a zero mean might have been expected. But if the drift 
term is ignored, the ACFs for all the individual transformations in ~ indicate white 
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Fig. 2. Optimal transformation for GNP residuals co = 0.006. /~(0.006) = (0.8,18.0, -2872.5) r. (Solid line) 
18 • Ixl (Spectral envelope estimate as in Fig. 1.). 

noise and only the spectrum for the absolute transformation provides some indication 

o f  a departure from white noise. In this case, evidence o f  low-frequency power still ex- 
ists in the spectral envelope, but a larger proportion o f  spectral power is also allocated 

over the frequency range 0.3-0.4.  

Example 3. Let Xt be generated by the non-linear model 

Xt = exp{~ sin(2nco0t + ~b) + et}, 

where q~ is a random phase, ~ > 0 and ~o0 are constants, and et is Gaussian white 
noise with variance a2. This example is adapted from Breiman and Friedman (1985) 

where the ACE procedure is discussed and, hence, motivates us to consider the result 
o f  applying the spectral envelope when the basis for ff does not include the log 

transformation. 
In the results presented below, realizations o f  this model were generated using the 

parameter values, • = 3, tr = 4 and m0 = 50/T, with T = 512 as the sample length o f  

the simulation. As might be expected, these parameter values can produce realizations 
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Fig. 3. Periodogram for simulated model (Example  3) Xt = exp(~ sin(2nco0t + 0 )  + et). T = 512, ct = 3, 

¢Oo = 50/T, a = 4. 

which sometimes contain extremely large (600,000+) observations. The periodogram 
for a typical realization is given in Fig. 3 and provides no evidence of any dominant 
frequency, including ~o = ~0 which is close to 0.1. 

in contrast, the sample spectral envelope computed with respect to f# = {x, x/~, x~/~} 
has little difficulty in isolating the frequency ~o0 as evident by the large peak in Fig. 4. 
Under the assumption that this process is white noise, the significance of a sin- 
gle a priori specified frequency can be assessed using Theorem 3.2 to approximate 
P[2n;tr(to) < Tx/2] for 0 ~< x ~< 1. Note that 4nT-12r(co) can be interpreted as the 
largest proportion of total power at frequency ~o that can be obtained for any transfor- 
mation in the class f#. In Fig. 4, the approximate 0.0001 (x = 4.84%) null significance 
threshold is plotted. 

The scaling corresponding to 2r(o~0) is fiT(090) ---- (1 .52e-  7,--3.1 le- -  04, 1 .9e-  3)L 
Although not shown here, the shape of the optimal transformation generated by flr(~Oo) 
is very close to a log(x) curve over the domain x < 4000 (which excludes 13 extreme 
values). A final note also worth mentioning is the result we obtained when the rather 
inappropriate basis {x, x2,x 3 } was employed. Surprisingly, the spectral envelope pro- 
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Fig. 4. Spectral envelope for simulated model (Example 3). Xt = exp(~sin(2nog0t + ~b)+ et). T = 512, 
ct - 3, ~no = 50IT, ~ - 4. fq = (x, x/~, ~/~). Periodogram based estimate. ( . . . .  ) approximate 0.0001 
null threshold. 

cedure often managed to assign a noticeably greater proportion of total power to the 
frequencies surrounding 090 due to the x 3 component. 

Example 4. In Bloomfield's (1976) exploratory analysis of the Sunspot series, the 
square root transformation was applied and compared to the untransformed spectnnn. 
Bloomfield's results suggest some benefit is gained by using a transformation, although 
the evidence is not overwhelming. (This can be mainly attributed to the asymmetry of 
the sunspot cycles; they typically rise more rapidly than they fall.) With the spectral 
envelope procedure however, an objective assessment can be made with respect to an 
entire class of transformations. 

Fig. 5 shows the result obtained from applying the spectral envelope procedure to 
the semi-annual aggregated series with respect to f# = {x, x/if, log (x + 1 )}. To facilitate 
examination of Fig. 5, we have plotted the sample spectral envelope on a log scale 
and included the normalized log periodogram of Xt which is represented by the broken 
line. Of interest is the presence of a peak near frequency 0.08 which corresponds to an 
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Fig. 5. Log spectral envelope for sunspot series T = 456, semi-annual aggregates, f# (x, x/E, log(x ÷ 1 )). 
Periodogram based estimate. ( . . . .  ) log periodogram of sunspot series. 

approximate 5½ year cycle. This particular harmonic is discussed in Shumway (1988) 
and is shown to be statistically significant using standard spectral diagnostics. 

In Fig. 6 we compare the effect of the transformations corresponding to the 11 and 
5½-year cycles. (To assist the visual comparison, the series has been rescaled and 
shifted so the y-axis graduations are not relevant here.) From a careful examination 
of these two series, it can be seen that the effect of the 5½ year transformation is 
to essentially "fold" the 11 year harmonic series (solid line) upon itself horizontally. 
This, of course, would produce a second harmonic with double the frequency which is 
evidently the case here. Shumway (1988) also discusses the presence of higher-order 
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Fig. 6. Transformed series associated with sunspot series T = 456, ff = (x,v'x, log(x + 1)). Periodogram 
based estimate. (Solid line) 11 year transformed series,/3 = (0, -0.59,1 ); (Broken line) 51 year transformed 
series, ,8 = (0,-0.42,  1) (Values rounded to 2 dp's). 

harmonics in this data which could be investigated in similar fashion using the spectral 
envelope. 

Example 5. In our final example we apply the spectral envelope procedure to a multi- 
variate time series. For illustrative purposes we have used a data set that would be 
readily available to the interested reader. Thus, we take the S data set bonds.yield 
which consists of  Daily Yields from six AT&T Bonds during the period April 1975 
to December 1975 (Becker et al., 1988)• Each of these series appear to exhibit a slow 
cycle rather than any obvious trend, and it is of  interest whether all of the component 
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Fig. 7. Spectral envelope for S dataset: bonds.yield T = 192, Daily bond yields for 6 AT&T bonds. 
Multivariate periodogram based estimate, ff = {Xlt . . . . .  S6t}. 

series contribute to this periodicity. If  not, then we should expect to see some of the 
fl(og) coefficients close to zero, and similarly at other frequencies of  interest. Note that 
asymptotic tests for the coefficient vector can be obtained via (3.8). 

From the sample spectral envelope shown in Fig. 7, we can identify two particular 
frequencies that seem to be of interest; ~ol = 1/192 or 2/192, and possibly 092 = 0.25. 
The presence of a large first fundamental is worth investing further since this can be 
caused by a simple trend rather than a sinusoid. Closer inspection of the individual 
series and their spectra (which all have a peak at frequency 2/192) would seem to 
suggest a possible slight trend (all the series drop rapidly towards the end), in con- 
junction with a strong cycle that has a frequency somewhere between the first two 

fundamentals. 
The sample scalings for the first two fundamental frequencies are, /~r(1/192) = 

(-0.77,  0.03, -0.41,  -0.07,  0.09, 1.00) ~ and/~r(2/192) = (0.03, 1.00, -0.63, -0.22,  
0.74, 0.35)L Since the variances associated with individual time series can be regarded 

as equal, we have scaled these vectors relative to their largest (absolute) component for 
clarity. Despite the apparent differences in the relative weightings of  the components 
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of Xt, both scalings produce transformed series with very similiar spectral properties. 
This inconsistency is resolved by employing a smoothed spectrum estimate to compute 

the fly scalings. Using (3.4) with m = 5, we obtain f ir(I /192) = (-0.96,  -0.57,  -0.22, 
-0.02,  0.16, 1.00) 3 corresponding to 2r(1/192) = 0.23, with similar weightings at the 
next fundamental. The low-frequency behavior is now seen to be dominated by the 

difference between Xlt and X6t, with X2t contributing as well. Applying (3.8) to get 
an asymptotic test for fl(1/192) = ( - 2 ,  - 1 ,  0, 0, 0, 2) 3 we obtained an asymptotic 

p-value between 0.28 and 0.49. Omitting the X2t component to see if a simple difference 
would suffice however, resulted in p-values that were less than 0.001. The scaling 
corresponding to the co2 frequency, suggests this four-day cycle is governed by the 

difference between Xst and X6t. However, its associated 2T value (which was rather 
marginal to begin with) becomes negligible when smoothing is applied. 

5. Discussion 

We have presented a general method for analyzing real-valued time series in the 
spectral domain which provides a useful complement to existing spectral diagnostic 

methods. The examples presented in Section 4 have shown that the spectral envelope 
procedure can be readily applied in variety of situations and simultaneously incorporates 
a range of results that can be used for interpretation. This article is not intended to be 
an exhaustive treatment of  the topic of course, and we conclude with a brief discussion 
of some problems for further research. 

The transformations we have considered so far have been restricted to univariate 

functions of  Xt, or in the vector case, Xjt. In Section 2 we indicated that the compo- 
nents of  a vector could also be constructed from a univariate series in order to ac- 
commodate non-instantaneous transformations. More generally, multivariate functions 

such as 9j(Xt ,Xt- l )  could just as easily be employed in the spectral envelope pro- 
cedure. I f  Xt is strictly stationary then, under suitable regularity conditions on the 
class ~, the results of Section 3 remain valid except for Theorem 3.2. This follows 
from Doob (1953) since any measurable function defined on the a-field of  Xt that is 
unitary with respect to the shift operator, will also be strictly stationary. An obvious 
problem is that the interpretation of the spectral envelope relative to Xt then becomes 
more complicated since we no longer have Theorem 3.2 as a 'point of  reference'. A 
simple example which can be interpreted is the case where 2(co) optimizes the trans- 
formation 9(Xt,Xt_l ) =  Xt + ~Xt-i over e, where Xt is white noise. This is equivalent 
to setting Yt = (Xt,Xt-I)  3 and rescaling the first component of  fl(co) to 1. By evalu- 
ating fre(co) we obtain 2(0)) = 1 + cosco and fl(co) = (1,4-1) ", with the minus case 

applying over co > ~/2. Thus, in this simple case of a MA(1) model, we see that 
the spectral envelope provides the correct result of unit-root filters that maximize the 
spectral power of g at co = 0 or g. 

The examples presented in this article have demonstrated some exploratory appli- 
cations of  the spectral envelope methodology where the choice of  f¢ was primarily 
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motivated by practical experience. As Example 3 suggests however, a semiparamet- 

ric approach could also be employed to generate (q from some suitable parent class, 

off say. Although further investigation is needed to more fully assess the finite sample 

properties of  this type of approximation procedure, asymptotic considerations lead to 
the following research problem which is also of  theoretical interest. By defining the 
Hilbert space 

off = {g : E[g(Xt)] = 0, E[g(Xt) 2] < oo} 

with inner product (gl, g2) = E[gl(Xt)gz(Xt)], the spectral envelope can be defined 
in terms of a linear operator on (4 C off. Thus, under suitable regularity conditions, a 

meaningful interpretation of the limit can be given in the situation where d im(q)  --~ ocD 
as T ~ oo, which describes the limiting behavior associated with an approximation 

procedure. 
Finally, it is also possible to extend the notion of the spectral envelope to multi- 

dimensional processes by defining it in terms of the wave number spectrum f(co) where 

(D = (091 . . . . .  O)d )  v. In geostatical applications for example, a number of  attributes, Xjs, 
j = 1 . . . . .  k say, are measured at each location s E ~ C ~d. Here, the spatial correlation 

of the process is of  interest, and when k = 1, the Covariogram provides an effective 
diagnostic tool. However, when k > 1, cross-covariograms need to be considered and 
since these are more difficult to model, linear combinations of the attributes are often 
employed to reduce the dimensionality or allow a covariogram analysis to be performed. 

(For details on this subject we refer the reader to Cressie (1993).) I f  ~ is a regular grid 
then the spectral envelope clearly enables an optimal linear combination to be obtained 

at each o9 which maximizes f ( to )  with respect to the total power. When d = 2, this 
information can be presented in terms of a contour plot with high density regions 

indicating strong wave number association. Whether such a representation would be 
useful in geostatistics applications remains to be seen. 
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