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SUMMARY

The classical method for estimating the spectral density of a multivariate time series is
first to calculate the periodogram, and then to smooth it to obtain a consistent estimator.
Typically, to ensure the estimate is positive definite, all the elements of the periodogram
are smoothed the same way. There are, however, many situations for which different
components of the spectral matrix have different degrees of smoothness. We propose a
Bayesian approach that uses Markov chain Monte Carlo techniques to fit smoothing splines
to each component, real and imaginary, of the Cholesky decomposition of the periodogram
matrix. The spectral estimator is then obtained by reconstructing the spectral estimator
from the smoothed Cholesky decomposition components. Our technique produces an
automatically smoothed spectral matrix estimator along with samples from the posterior
distributions of the parameters to facilitate inference.

Some key words: Coherency; Cholesky decomposition; DNA nucleotide sequence; Markov chain Monte Carlo;
Multivariate spectral density; Smoothing spline; Spectral analysis; Spectral envelope.

1. INTRODUCTION

The classical method for estimating the spectral density of a multivariate time series is
first to calculate the periodogram and then to smooth it to obtain a consistent estimator
(Brillinger, 2001, Ch. 5; Shumway & Stoffer, 2006, Ch. 4). A major difficulty is to guarantee
that the final estimate is positive definite while allowing optimal smoothing for each element
of the spectral matrix. Typically, to ensure the estimate is positive definite, all the elements
of the periodogram are smoothed the same way. Pawitan (1996) proposed a penalized
likelihood estimator for the cross-spectrum of a bivariate time series. The smoothing
parameters for the real and imaginary parts can be chosen objectively from the data.
Thus the real and imaginary parts can have different smoothness. With an implicit
restriction on the estimation procedure to make the coherence less than or equal to one, the
estimator is positive semidefinite. Extension of this method beyond bivariate time series is
difficult because estimating the cross-spectra one at a time cannot guarantee that the final
multivariate spectral estimate is positive semidefinite. Another difficulty is in constructing
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confidence intervals for the spectrum. In the univariate setting, Franke & Har̈dle (1992)
proposed a bootstrap procedure for constructing confidence intervals. However, it is
difficult to generalize this method to the multivariate setting. As pointed out in Dai & Guo
(2004), there are many situations for which different components of the spectral matrix
have different degrees of smoothness, and hence require different smoothing parameters in
order to obtain optimal estimators.

Dai & Guo (2004) overcame these problems by smoothing the Cholesky decomposition
of a multitaper spectral estimator and then reconstructing the spectral estimator from the
smoothed Cholesky components. Given data from a stationary, vector-valued time series,
their estimation and inference procedure consisted of the following steps: compute the
periodogram of the data; smooth the periodogram using a multitaper spectral estimator
(Thomson, 1982); perform the Cholesky decomposition on the multitaper estimator;
smooth each of the Cholesky decomposition components with its own smoothing
parameter; reconstruct the spectral estimator from the smoothed Cholesky decomposition
components; and finally use a bootstrap method to obtain pointwise confidence intervals.

In this paper, we take a Bayesian approach that uses Markov chain Monte Carlo
techniques to fit smoothing splines to each component, real and imaginary, of the Cholesky
decomposition of the periodogram matrix. The spectral estimator is then obtained
by reconstructing the spectral estimator from the smoothed Cholesky decomposition
components. The advantage of our technique is that it allows for automatic smoothing
of the components but avoids having to pre-smooth the periodogram by calculating a
multitaper estimate. In addition, because our procedure produces a sample from the
posterior distribution of all the parameters, credible intervals are easily obtained.

Throughout, we assume that we have a sufficiently large number, n, of observations
from a p-dimensional stationary time series, xt , whose p × p autocovariance matrix,
�(h) = {γ jk(h)}, satisfies ∑∞

h=−∞ |γ jk(h)| < ∞ for all j, k = 1,. . . , p. The p × p spectral
density matrix is given by

f (ν) =
∞∑

h=−∞
�(h)e−2πiνh, −1/2 � ν � 1/2 ,

where f (ν) = {fjk(ν)}, for j, k = 1,. . . , p, and frequency, ν, is measured in cycles per unit
time; note that f (ν) = f ∗(ν), where ∗ denotes the conjugate transpose. Finally, we assume
that f (ν) is positive definite.

2. THE MODEL AND PRIOR SPECIFICATION

Given a realization x1,. . . , xn from a multivariate stationary time series, the discrete
Fourier transform of the data is given by

y(νk) = n−1/2
n∑

t=1
xte

−2πiνkt ,

for k = 0, 1,. . . , n − 1, where νk = k/n are the Fourier frequencies. The discrete Fourier
transforms, y(νk), k = 0,. . . , n − 1, of a zero-mean stationary multivariate time series are
approximately independent complex multivariate normal random variables. Let yk ≡ y(νk)

and fk ≡ f (νk), k = 0,. . . , n − 1. The approximate likelihood is given by

L(y0,. . . , yn−1; f0,. . . , fn−1) �
n−1∏
k=0

det(fk)
−1 exp(−y∗

kf
−1
k yk), (1)
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where det(·) denotes determinant. Equation (1) is an extension of the Whittle likelihood
(Whittle, 1957) to the multivariate case. Note that, since the spectral matrix and the discrete
Fourier transform are even functions of ν, there are only [n/2] distinct observations.

Our goal is to obtain smooth estimators of the elements of f as a function of ν while
satisfying the constraint that f is positive definite. To this end, we express the inverse of
the spectral matrix at frequency νk as the modified complex Cholesky factorization

f −1
k = T ∗

k D−1
k Tk, (2)

where Tk is a complex unit lower triangular matrix, and Dk is a diagonal matrix. To be
more specific,

Tk =



1
−θ

(k)
21 1

−θ
(k)
31 −θ

(k)
32 1

...
...

. . .

−θ
(k)
p1 −θ

(k)
p2 . . . −θ

(k)
p,p−1 1


and Dk = diag(δ2

1k,. . . , δ
2
pk). Note that, in general, the θ

(k)
il ’s are complex-valued. The

real modified Cholesky decomposition has been used to model covariance matrices; see
for example Pourahmadi (1999), Pourahmadi (2000), Daniels & Pourahmadi (2002),
Pourahmadi & Daniels (2002) and Wu & Pourahmadi (2003).

We note that Dai & Guo (2004) worked directly with the complex Cholesky
decomposition of fk, fk = LkL

∗
k say, where Lk is lower triangular. In particular, they

obtained smoothed estimators of the elements of Lk. In our case, we use the modified
decomposition of f −1

k given in (2) because it appears naturally in the likelihood, (1). As
previously stated, it is difficult to model the elements of the spectral matrix directly because
of the constraint that the spectral matrix must be positive definite at each frequency. In the
factorization (2), the θ

(k)
il ’s are unconstrained and the δ2

jk’s are positive. Thus, it is much
easier to model these parameters rather than the elements of the spectral matrix. Once Tk

and Dk have been estimated, the resulting estimator of fk is automatically positive definite.
To facilitate the estimation of the θ

(k)
il ’s and the δ2

jk’s and thereby the estimation of
the spectral matrix, we use the likelihood (1) in combination with the factorization (2).
We first rewrite the likelihood (1) as a function of the θ

(k)
il ’s and the δ2

jk’s. Let N = [n/2],
θk be the p(p − 1)/2-dimensional vector (θ

(k)
21 , θ

(k)
31 , θ

(k)
32 ,. . . , θ

(k)
p,p−1)

′, � = (θ1,. . . , θN),
� = {δ2

1k,. . . , δ
2
pk}Nk=1 and Y = (y1,. . . , yN). From (1) and (2) it follows that the likelihood

can be expressed as

L(Y ;�,�) ∝
N∏

k=1

p∏
j=1

δ−2
jk exp{(yk − Zkθk)

∗D−1
k (yk − Zkθk)}, (3)

where Zk is a p × p(p − 1)/2 design matrix given by

Zk =



0 0 0 0 0 0 0 . . . 0
y1k 0 0 0 0 0 0 . . . 0
0 y1k y2k 0 0 0 0 . . . 0
0 0 0 y1k y2k y3k 0 . . . 0
...

0 . . . . . . 0 y1k y2k . . . yp−1,k
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with yik denoting the ith entry of yk. Note that in (3) we have ignored the endpoint
involving y0. Next, we place linear smoothing spline priors on the θ

(k)
il ’s and the δ2

jk’s. Dai
& Guo, 2004) used cubic smoothing splines. In our experience, linear smoothing splines are
better suited to estimating the spectral matrix, as they can better accommodate narrowband
peaks. In particular, each of the log δ2

jk’s and the real and imaginary parts of each of the
negative θ

(k)
il ’s are expressed as

α0 + α1νk +
N∑

s=1
ψs(νk)βs , (4)

where ψs(νk) = √
2 cos{(s − 1)πνk}. The ψs(·)’s are the Demmler–Reinsch basis functions

for linear smoothing splines (Eubank, 1999). Let Xβ be the matrix whose columns are the
basis functions ψs(·) evaluated at ν1,. . . , νN , and let Xα be a matrix whose columns are the
vector of ones and (ν1,. . . , νN)′. Let X = (Xα

∣∣ Xβ) be the matrix formed by binding Xα

and Xβ columnwise, γj = (α′
j , β

′
j )

′, �j = (δ2
j1,. . . , δ

2
jN)′ and θ il = (θ

(1)
il ,. . . , θ

(N)
il )′. Then

log �j = Xγj , −�(θ il) = Xγ il(re), −�(θ il) = Xγ il(im) , (5)

for j = 1,. . . , p, i = 2,. . . , p, and l = 1,. . . , i − 1, where �(·) and �(·) denote the real part
and the imaginary part, respectively. Corresponding to (5), the priors on αj , αil(re) and αil(im)

are taken to be N(0, σ 2
αI2), and those on βj , βil(re) and βil(im) are taken to be N(0, τ 2

j IN),
N(0, τ 2

il(re)IN) and N(0, τ 2
il(im)IN), respectively. With the θ

(k)
il ’s and the δ2

jk’s viewed as
functions of ν, the parameters τ 2

j , τ 2
il(re) and τ 2

il(im) are smoothing parameters, governing
the amount of smoothing of each of these functions. A zero value of a smoothing parameter
corresponds to a linear fit, while a value tending to infinity results in an interpolating linear
spline. The priors on the smoothing parameters are p(τ 2

j ) ∝ 1/τ 2
j , p(τ 2

il(re)) ∝ 1/τ 2
il(re) and

p(τ 2
il(im)) ∝ 1/τ 2

il(im). We estimate the spectral matrix by its posterior mean using Markov
chain Monte Carlo methods to perform the required multidimensional integration.

3. THE SAMPLING SCHEME

Let uk = yk − Zkθk. If we plug the expression for log �j in (5) into the likelihood (3) and
incorporate the priors, the conditional distribution of γj , j = 1,. . . , p, is given by

p(γj

∣∣ �,Y ) ∝ exp [− N∑
k=1

{x ′
kγj + |ujk|2 exp(−x ′

kγj )} − 1
2σ 2

α

α′
jαj − 1

2τ 2
j

β ′
jβj] , (6)

where ujk is the j th element of uk, | · | denotes the complex modulus and xk is the
kth row of X. Since this is not a standard distribution, we use a Metropolis–Hastings
step to sample from it. The conditional distributions of the corresponding smoothing
parameters are IG(N/2, 1

2β ′
jβj ), for j = 1,. . . , p. The conditional distributions of γ il(re) and

γ il(im), for i = 2,. . . , p and j = 1,. . . , i − 1, are multivariate normal, and the conditional
distributions of the corresponding smoothing parameters are IG(N/2, 1

2β ′
il(re)βil(re)) and

IG(N/2, 1
2β ′

il(im)βil(im)), where IG denotes the inverse gamma distribution. In principle, for
smoothing splines, the knots are at the abscissa values of the data points. Thus, in our
case, there are N basis functions. In practice, however, not all the N basis functions are
necessary; in fact, only about N/10 are usually sufficient. More details of the sampling
scheme are given in the Appendix.
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4. EXAMPLES

4·1. Simulated data

We simulated n = 1024 observations from the bivariate times series, xt = (x1t , x2t )
′,

xt = �1xt−1 + �2xt−2 + zt ,

in which

�1 = ( 0·5 0
0 −0·3 ) ,�2 = ( 0 0

0 −0·5 ) and zt ∼ N {0, � = ( 1 0·9
0·9 1 )} .

The zt were generated independently. The 2 × 2 spectral matrix of the process is (Shumway
& Stoffer, 2006, Ch. 4)

f (ν) = �−1(ν)� �∗−1(ν),

where
�(ν) = I − �1 exp(−2πiν) − �2 exp(−4πiν).

From this fact, we may calculate the elements of the spectral matrix of this process:

f11(ν) = {1·25 − cos(2πν)}−1 ,

f22(ν) = {1·34 + 0·9 cos(2πν) + cos(4πν)}−1 ,

f12(ν) = 0·9[0·85 − 0·45 cos(2πν) + 0·5 cos(4πν) + i{0·5 sin(4πν) + 0·55 sin(2πν)}]−1

and f21(ν) = f ∗
12(ν). In addition, the squared coherency between the component processes

is constant:

ρ2
12(ν) = |f12(ν)|2

f11(ν)f22(ν)
= 0·81.

Figure 1 displays the periodogram ordinates of the simulated series, the true spectral
components, f11(ν) and f22(ν), and the corresponding estimated spectra along with 99%
pointwise credible intervals, all on a log scale. These intervals are obtained as the 0·005 and
0·995 empirical percentiles of the Markov chain Monte Carlo iterates, after the burn-in
period, of Xγ 1 and Xγ 2 at each νk. For each example, the Markov chain Monte Carlo
procedure was run for a total of 2000 iterations with a burn-in period of 1000 iterations.
In addition, the estimated squared coherency, not shown, is approximately a straight
line around the true squared coherency, ρ2

12(ν) = 0·81. This example demonstrates that
our technique is a viable way of obtaining smoothed spectral estimates of multivariate
processes.

Some comments are in order. First, note that the spectral density of the second
component, f22(ν), has a fairly sharp peak around ν = 0·28. This fact is obscured in
Fig. 1 because, to improve the visual impact, the spectra are plotted on a log scale, and
in landscape mode; spectra are typically plotted this way. Secondly, because changing
the order of the time series will change the Cholesky decomposition of the spectral
matrix, we investigated the possibility that the ordering matters. In particular, we repeated
this simulation with the components reversed, that is, with xt = (x2t , x1t )

′, instead of
xt = (x1t , x2t )

′. Although the components of the Cholesky decomposition were changed,
the final estimates of the spectra and cross-spectra did not change. Finally, to monitor
convergence, we ran four chains with dispersed random starting points. We then looked
at iteration plots, i.e. the iterates from the four chains for a given parameter as a function
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Fig. 1. Simulated data. The true spectra (solid line), the periodogram ordinates (dots) and
99% credible intervals (dashed lines), all on a log scale, for (a) f11 and (b) f22.

of the iteration number. In all the plots, following the burn-in period, the within-chain
variation was in close agreement with the between-chain variation, i.e. the four chains were
almost indistinguishable.

4·2. The El Niño cycle

Throughout Shumway & Stoffer (2006), two simultaneously recorded series are used
to explore the El Niño cycle. Figure 2 shows these series, which are monthly values of
the Southern Oscillation Index and associated Recruitment, i.e. number of new fish, for a
period of 453 months ranging over the years 1950–1987. The Southern Oscillation Index
measures changes in air pressure related to sea surface temperatures in the central Pacific
Ocean. The central Pacific Ocean warms every 3 to 7 years because of the El Niño effect.
Both series exhibit regularly repeating cycles, and the two series are related because the fish
spawn in colder waters.

Figure 3 presents the estimated spectra, i.e. the diagonal elements of the estimated
spectral matrix, as a function of frequency. Both spectra have peaks at about the same
frequencies. One is at ν = 1/12 cycles per month, which is the obvious yearly cycle. The
other peak at about ν = 1/48 represents a possible El Niño effect. The yearly cycle has
more power in the Southern Oscillation Index series. In addition, both spectra show small
peaks at the harmonic frequencies of the yearly cycle.

To examine how the two series are related, we also plotted the estimated squared
coherency in Fig. 4. This plot shows that the El Niño and yearly cycles are strongly coherent.
Other frequencies are also coherent but this is less meaningful, because they are harmonics
of the yearly cycle and the power spectra at the harmonics, see Fig. 3, are small.
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Fig. 2. Monthly (a) Southern Oscillation Index and (b) Recruitment series for the years 1950–1987.
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Fig. 3. Individual estimated spectra of the (a) Southern Oscillation
Index and (b) recruitment series.
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Fig. 4. Squared coherency function relating Southern Oscilla-
tion Index to recruitment.

4·3. Spectral envelope and DNA sequences

In some applications, an investigator may be more interested in a function of the
components of a spectral matrix, such as coherency, described in the previous subsections.
We now investigate the case of estimating eigenvalues and eigenvectors of the spectral
matrix. In particular, we focus on estimating the spectral envelope, i.e. an eigenvalue, and
the corresponding scaling, i.e. an eigenvector, of a DNA nucleotide sequence. In this case,
the data are a sequence of multivariate 3 × 1 indicator vectors that correspond to the
sequence of nucleotides. For brevity, we refer the reader to Stoffer et al. (1993) or Shumway
& Stoffer (2006, §7·9) for a discussion of the spectral envelope.

In this example, we analyze part of the BNRF1 gene in Herpesvirus saimiri; the data
are taken from GenBank. This particular coding sequence occurs from bp 6821 to bp 10
561, where ‘bp’ means ‘base-pair’. As in Stoffer (2002), we estimate the spectral envelope
for 1000 bps starting at bp 8820 of the coding sequence. Figure 5 displays the estimated
spectral envelope corresponding to this subset of the sequence. The spectral envelope picks
up a signal at one cycle every three bps, which occurs often in coding sequences we have
analyzed. There is another peak in the spectral envelope indicating a signal at one cycle
every 10 bps. This signal is particularly interesting because, while the double helix makes
one turn about every 10 base-pairs, the 10 bps signal is rarely seen and the importance of
this twisting is not clear.

Finally, it is worthwhile to look at the scalings corresponding to each peak. For ν = 1/10,
the scalings for the bases are A = 2·12, C = 1·93, G = 0·17 and T = 0. This suggests that
the signal is attributed to the M-K alphabet, where M = A or C and K = G or T is the
complement of M. This structure itself is of interest. The relationship between A and C is
that both have aMino, hence the M, groups at the ring position most distant from the point
of attachment to the sugar, and the relationship between G and T is that both have Keto,
hence the K, groups at the corresponding position. For ν = 1/3, the scalings are A = 2·28,
C = 0·89, G = 2·16 and T = 0. This suggests that the signal may be attributed to the
common RYY alphabet, where R denotes a puRine, A or G, and Y denotes a pYrimidine,
C or T.
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Fig. 5. Spectral envelope for part of a coding sequence
in Herpesvirus saimiri.
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APPENDIX

Technical Details

Details of the Sampling Scheme. In this appendix we give more details about the conditional
distributions of γ il(re) and γ il(im), i = 2,. . . , p, l = 1,. . . , i − 1, used for performing the Gibbs
sampler. We use the notation established in §§2 and 3.

Bivariate time series. Let

v21(re) =
N∑

k=1
δ−2

2k (y∗
2k y1k + y∗

1k y2k)xk,

v21(im) =
N∑

k=1
δ−2

2k i(y∗
2k y1k − y∗

1k y2k)xk,

A21(·) = diag{1
2
(σ−2

α , σ−2
α , τ−2

21(·),. . . , τ
−2
21(·))} ,

for · = re, im, and

B21 =
N∑

k=1
δ−2

2k |y1k|2xkx
′
k,

where y∗
jk denotes the complex conjugate of yjk and i = √

(−1). Then

γ 21(re)

∣∣γ 2, τ 2
21(re), Y ∼ N(µ21(re), �21(re)), (A1)

γ 21(im)

∣∣γ 2, τ 2
21(im), Y ∼ N(µ21(im), �21(im)) , (A2)

where �21(·) = 1
2 (A21(·) + B21)

−1 and µ21(·) = �21(·)v21(·), for · = re, im.
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The conditional distribution for drawing γj , j = 1, 2, is given in (6). To draw from it, we
use a Metropolis–Hastings step with a multivariate normal proposal distribution. The mean and
variance-covariance matrix of this multivariate normal distribution are the maximizer of (6) with
respect to γj , and the inverse of the negative hessian of (6) evaluated at this maximizer, respectively.
Thus, the sampling scheme consists of the following steps.

Step 1. Draw γj from (6), for j = 1, 2.

Step 2. Draw γ 21(re) and γ 21(im) from (A1) and (A2), respectively.

Step 3. Draw τ 2
j , j = 1, 2, τ 2

21(re) and τ 2
21(im) from the inverse Gamma distributions described in

§3.

Trivariate time series. The vectors γ 21(re) and γ 21(im) are drawn according to (A1) and (A2),
respectively. Let

v31(re) =
N∑

k=1
δ−2

3k {y∗
3k y1k + y3k y∗

1k − x ′
kγ 32(re)(y

∗
1k y2k + y∗

2k y1k)}xk,

v31(im) =
N∑

k=1
δ−2

3k {i(y∗
3k y1k − y3k y∗

1k) − x ′
kγ 32(im)(y

∗
1k y2k + y∗

2k y1k)}xk,

B31 =
N∑

k=1
δ−2

3k |y1k|2xkx
′
k,

v32(re) =
N∑

k=1
δ−2

3k {y∗
3k y2k + y3ky

∗
2k − x ′

kγ 31(re)(y
∗
1k y2k + y∗

2k y1k)}xk,

v32(im) =
N∑

k=1
δ−2

3k {i(y∗
3k y2k − y3ky

∗
2k) − x ′

kγ 31(im)(y
∗
1k y2k + y∗

2k y1k)}xk,

B32 =
N∑

k=1
δ−2

3k |y2k|2xkx
′
k.

For i = 3, l = 1, 2 and · = re, im, let Ail(·) = diag { 1
2 (σ−2

α , σ−2
α , τ−2

il(·),. . . , τ
−2
il(·))}. Then

γ 31(re)

∣∣ γ 32(re), γ 3, τ 2
31(re), Y ∼ N(µ31(re), �31(re)),

γ 31(im)

∣∣ γ 32(im), γ 3, τ 2
31(im), Y ∼ N(µ31(im), �31(im)),

γ 32(re)

∣∣ γ 31(re), γ 3, τ 2
32(re), Y ∼ N(µ32(re), �32(re))

γ 32(im)

∣∣ γ 31(im), γ 3, τ 2
32(im), Y ∼ N(µ32(im), �32(im)),

where �il(·) = 1
2 (Ail(·) + Bil)

−1 and µil(·) = �il(·)vil(·), for i = 3, l = 1, 2 and · = re, im. The different
parameters are drawn in an analogous fashion to that described in the bivariate case.
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