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a b s t r a c t

This paper is motivated by the pioneering work of Emanuel Parzen wherein he

advanced the estimation of (spectral) densities via kernel smoothing and established

the role of reproducing kernel Hilbert spaces (RKHS) in field of time series analysis.

Here, we consider analysis of power (ANOPOW) for replicated time series collected in an

experimental design where the main goals are to estimate, and to detect differences

among, group spectra. To accomplish these goals, we obtain smooth estimators

of the group spectra by assuming that each spectral density is in some RKHS; we

then apply penalized least squares in a smoothing spline ANOPOW. For inference,

we obtain simultaneous confidence intervals for the estimated group spectra via

bootstrapping.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The seminal publications Parzen (1961a, 1961b) and Parzen (1962), wherein Professor Parzen introduced the role of
reproducing kernel Hilbert spaces (RKHS) in the analysis of time series and advanced the estimation of (spectral) densities
via kernel smoothing (see also Rosenblatt, 1956) are the motivation for this paper. Here, we consider analysis of power
(ANOPOW) for replicated time series collected in experimental designs wherein the main goal is to detect differences
among group spectra.

For one-way ANOPOW, we suppose we have n‘41, for ‘¼ 1, . . . ,L, stationary time series that are observations in group
‘. We denote the observations as Y‘jðtÞ for ‘¼ 1, . . . ,L, j¼ 1, . . . ,n‘ and t=1,y, n; in addition, we define the corresponding
group indicators xi,‘j ¼ 1 if i¼ ‘ and 0 otherwise. We do not assume the series are in phase, but we assume the time series in
each group are replications from a process with spectral density f‘ðoÞ. The main problem is to determine whether the
group spectra are equal, and if they are not, determine the location of the differences. To this end, we assume that the
spectral density of Y‘jðtÞ can be written as

f‘ðoÞ ¼ exp½b0ðoÞþb1ðoÞx1,‘jþb2ðoÞx2,‘jþ � � � þbL�1ðoÞxL�1,‘j� ð1Þ
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where fb0ðoÞ, . . . ,bL�1ðoÞg is a collection of L group parameter functions. Note that the only restriction imposed by (1) on
the group spectra is that f‘ðoÞ40. In addition, the b�functions have a meaningful interpretation in that

log
f‘1
ðoÞ

f‘2
ðoÞ ¼ b‘1

ðoÞ�b‘2
ðoÞ ð2Þ

for ‘1, ‘2 ¼ 1, . . . ,L, where we take bLðoÞ � 0. Thus, for example, if b‘1
ðoÞ ¼ b‘2

ðoÞ for all o, then the spectral densities of
those particular groups are equal. If there are frequencies for which b‘1

ðoÞ4b‘2
ðoÞ, then f‘1

ðoÞ4 f‘2
ðoÞ over those

frequencies and vice versa.
The problem of testing for simultaneous group equality becomes the problem of testing the null hypothesis

H0 : b1ðoÞ ¼ � � � ¼ bL�1ðoÞ � 0, and if this hypothesis is rejected, the problem becomes identifying the frequencies for
which the individual b�functions are different. Rather than performing a test of hypothesis under the null assumption, we
prefer to estimate the individual group spectra and determine whether or not there is evidence that at least one of the
b�functions differ from zero over a range of frequencies. Hence, the essential part of the problem is estimating the group
spectra under the stated assumptions and we address that in the next section. Finally, we mention that this problem may
be easily extended to higher-way ANOPOW, e.g., block designs, in an obvious analogy to the analysis of variance (ANOVA).

The general estimation method is motivated by the following considerations and has been used by others (e.g., Wahba,
1980). Suppose we observe n observations from a stationary time series Y(t) with spectral density f ðoÞ. Let IðokÞ denote the
periodogram of Y(t), i.e.,

IðokÞ ¼ n�1
Xn

t ¼ 1

YðtÞexp �2pit
k

n

� ������
�����
2

ð3Þ

at Fourier frequency ok ¼ k=n. Then, under general conditions (e.g., Shumway and Stoffer, 2006, Appendix C), the
periodogram, IðokÞ, is distributed asymptotically as f ðokÞ times a random variable with a Gamma distribution with shape
and scale parameters both equal to 1; in addition, Iðok1

Þ and Iðok2
Þ, for ok1

aok2
, are approximately independent for n

sufficiently large. Based on these results we may write to a good approximation

IðokÞ ¼ f ðokÞUk

or

logIðokÞ ¼ logf ðokÞþZk ð4Þ

for k¼ 1,2, . . . ,½ðn�1Þ=2�, where Uk �
iid

Gamma(1,1), the Gamma distribution with scale and shape parameters equal to
unity. In this case, Zk ¼ logUk so that Eð�ZkÞ ¼ g[0:57721 (Euler’s constant) and Var ðZkÞ ¼ p2=6. Wahba (1980) used this
model to obtain what she refers to as an optimally smoothed spline estimate of the logged spectral density.

In the case of ANOPOW, given a time series Y‘jðtÞ from group ‘, under assumption (1),

logf‘ðokÞ ¼ b0ðokÞþb1ðokÞx1,‘jþ � � � þbL�1ðokÞxL�1,‘j ð5Þ

so that if I‘jðokÞ is the periodogram of Y‘jðtÞ, we have the generalized linear model (GLM)

logI‘jðokÞ ¼ b0ðokÞþb1ðokÞx1,‘jþ � � � þbL�1ðokÞxL�1,‘jþZ‘j,k ð6Þ

where the Z‘j,k can be considered as being independent and identically distributed (iid) as the log of Gamma(1,1) random
variables.

An extensive discussion of some of the approaches to spectral regression and ANOPOW can be found in Shumway and
Stoffer (2006, Chapter 7). In addition, Diggle and al Wasel (1997) present some approaches to the ANOPOW problem. The
methods discussed in the aforementioned references fall short of being generally applicable in many ways. The typical
shortcomings include the use of averaged periodograms, which implies the series are in phase or can be aligned (e.g.,
Shumway, 1971; Brillinger, 1980), the employment of frequency-by-frequency GLM analysis that ignores the fact that the
spectral density is smooth whereas the periodogram is rough (e.g., Diggle and al Wasel, 1997), or the use of somewhat
questionable parametric assumptions on the group spectra to ease the analysis (e.g., Diggle and al Wasel, 1997). With
regard to the last shortcoming, Diggle and al Wasel (1997) proposed a model wherein the spectrum of group ‘ has the form

logf‘ðokÞ ¼
Xp

j ¼ 1

d‘kjbj ð7Þ

where p is arbitrary, the d’s are specified and the b’s are parameters to be estimated. While (7) looks similar to (5), the bj in
(7) do not depend on frequency or group, which are the two main interests in an ANOPOW. A model that is similar to ours
for one-way ANOPOW can be found in Fokianos and Savvides (2008), wherein to induce smoothness, the bjðoÞ are
constrained to be functions of sinusoids in a similar fashion to the exponential model for the log-spectrum of a stationary
process that was introduced by Bloomfield (1973) and later used in Parzen (1993) to propose a goodness-of-fit test.

To overcome these problems, we introduce the idea of analysis of power via penalized least squares in reproducing
kernel Hilbert spaces.
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2. Penalized least squares in RKHS

We begin with the assumption that f is in some RKHS, that is, a Hilbert space, H, of functions in which all the point
evaluations are bounded; e.g., see Aronszajn (1950), Gu and Wahba (1993b), or Wahba (1990). Let H be some RKHS of
real-valued of functions of t ¼ ðt1,t2, . . . ,tdÞ and t 2 T ¼ T ð1Þ � T ð2Þ � , . . . , � T ðdÞ, where ta is the ath variable in T ðaÞ and T ðaÞ
is some measurable space. Now we construct a probability measure dma on T ðaÞ for each a = 1,2, y, d with the symbol
ðAaf ÞðtÞ, defined by

ðAaf ÞðtÞ ¼

Z
T ðaÞ

f ðt1, . . . ,tdÞdmaðtaÞ ð8Þ

is well defined and finite and for every f 2 H and t 2 T .
We can consider Aa as an operator from H to H and the decomposition of the identity, I, as

I¼
Y

a

½AaþðI�AaÞ�

¼
Y

a

Aaþ
X

a

ðI�AaÞ
Y
baa

Ab

þ
X
aob

ðI�AaÞðI�AbÞ
Y

caa,b

Acþ � � � þ
Y

a

ðI�AaÞ ð9Þ

In general, as discussed in Gu and Wahba (1993b), f has an unique representation of the SS-ANOVA form

f ðtÞ ¼ Cþ
X

a

faðtaÞþ
X
aob

fabðta,tbÞþ
X

aobo c

fabcðta,tb,tcÞþ � � � ð10Þ

where C ¼ ð
Q

aAaÞf is the mean, fa ¼ ½ðI�AaÞ
Q

baaAb�f are the main effects, and fab ¼ ½ðI�AaÞðI�AbÞ
Q

caa,bAc�f are the two-
factor interactions in (9), and so on.

In this paper we work with the case d = 1, but we note that Guo et al. (2003) and Qin et al. (2009) have used the case
d = 2 to establish a time–frequency functional model. In our case, using Taylor’s theorem, if f is a real valued function on [0, 1]
with f 0,f

00

, . . . ,f ða�1Þ continuous derivatives and f ðaÞ 2 L2½0,1�, then f can be expressed as

f ðxÞ ¼
Xa�1

v ¼ 0

xv

v!
f ðvÞð0Þþ

Z 1

0

ðx�uÞa�1
þ

ða�1Þ!
f ðaÞðuÞdu ð11Þ

where (x)+ =x if xZ0 and (x)+ = 0 if xo0.
Now, we define the Sobolev Hilbert space (e.g., see Adams, 1975) Ha given by Ha½0,1� ¼ ff : f ,f 0; f

00

. . . ,
f ða�1Þ absolutely continuous and f ðaÞ 2 L2g. Then, each function f in Ha has a Taylor series expansion (11) to order a and
has a decomposition as f = f0 + f1 with f0 2 H0 and f1 2 H1 given by the first and the second terms in (11). Moreover,R 1

0 ½ðD
af0ÞðuÞ�

2 du¼ 0 and
Pa�1

v ¼ 0½ðD
vf1Þð0Þ�

2 ¼ 0 where Dv denotes the v-th derivative of function; e.g., see Wahba (1990).
Therefore, we can represent Ha as the direct sum,

Ha ¼H0 �H1 ð12Þ

Consequently, the square norm of f 2 Ha is given by

Jf J2
¼
Xa�1

v ¼ 0

½ðDvf Þð0Þ�2þ

Z 1

0
½ðDaf ÞðuÞ�2 du ð13Þ

implying that the subspaces H0 and H1 of Ha are perpendicular.
The basis of our estimation technique is that of penalized least squares, which can be described for a single series as

follows. In view of (4), let yk ¼ logIðokÞ be the logged periodogram of the observed series and let gk ¼ logf ðokÞ be the
corresponding logged spectral density. We establish a penalty functional

R 1
0 ½g

aðuÞ�2 ¼ JP1gJ2
Ha

where P1 is the orthogonal
projection of g onto H1 and estimate g by penalized least squares, wherein we minimize

1

m

Xm

k ¼ 1

ðyk�gkÞ
2
þlJP1gJ2

Ha
ð14Þ

where m¼ ½ðn�1Þ=2� and l is a smoothing parameter. In the next section we will use these ideas to form a smoothed
estimate of group spectra specified in (1).
3. Estimation

As in Section 1, we focus on one-way ANOPOW; the analysis of higher-way models follows easily and directly from this
case. Recall that we observe stationary time series Y‘jðtÞ for t=1, y, n where there are j¼ 1, . . . ,n‘ replications in ‘¼ 1, . . . ,L
Please cite this article as: Stoffer, D.S., et al., Smoothing spline ANOPOW. J. Statist. Plann. Inference (2010), doi:10.1016/
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groups. We assume that the corresponding group spectra, f‘ðoÞ, are strictly positive and write the logged spectra as

g‘ðoÞ � logf‘ðoÞ ¼ b0ðoÞþb‘ðoÞ ð15Þ

where we put bLðoÞ ¼ 0. Our goal is to estimate the b�functions from the replicated series.
Given the replicated time series, Y‘jðtÞ, let logðI‘jðokÞÞ denote the corresponding logged periodogram [cf. (3)], and write

y‘jðokÞ ¼ logðI‘jðokÞÞþg ð16Þ

where g is Euler’s constant for k=1,y, m =[(n�1)/2]; we avoid working with the frequencies ok ¼ 0, 1
2.

Then, as discussion in Section 1, the y‘jðokÞ can be modeled approximately as

y‘jðokÞ ¼ g‘ðokÞþe‘j,k ¼ x0‘bðokÞþe‘j,k ð17Þ

where x‘ ¼ ðx0,‘j ¼ 1,x1,‘j, . . . ,xL�1,‘jÞ
0 is the L	1 design vector (recall that xp,‘j is essentially a group indicator and xp,‘j ¼ 1 if p¼ ‘

and 0 otherwise, for p=0,y,L�1, j¼ 1, . . . ,n‘ and ‘¼ 1, . . . ,L�1), bðokÞ ¼ ðb0ðokÞ,b1ðokÞ, . . . ,bL�1ðokÞÞ
0 is the L	1 vector of

parameters at Fourier frequency ok ¼ k=n, and the e‘j,k are asymptotically independent with mean 0 and variance p2=6. Note that
the bðokÞ are periodic functions with period 1, i.e., bðokÞ ¼ bðokþ1Þ, and are symmetric around ok ¼ 0:5 i.e., bðokÞ ¼ bð1�okÞ

in the frequency domain. For convenience, we only use half of the frequency domain in (17) to be free of the periodic constraints.
We may write the model (17) in a more convenient form. First, we define

y‘j ¼

y‘jðo1Þ

^

y‘jðomÞ

0
B@

1
CA, bpðOÞ ¼

bpðo1Þ

^

bpðomÞ

0
B@

1
CA

and Dp‘ ¼ diagfxp,‘j, . . . xp,‘jg, for p=0,1,y,L�1. Then, the model can be written as

y‘j ¼
XL�1

p ¼ 0

Dp‘bpðOÞþe‘j ð18Þ

where e‘j ¼ ðe‘j,1, . . . e‘j,mÞ0, for ‘¼ 1 . . . ,L and j¼ 1, . . . ,n‘ .
We now use the penalized least squares (PLS) method to obtain smoothed estimates of the b�functions along the lines

suggested in Section 2. To this end, we first stack the data vectors, y‘j, and the corresponding design matrices, Dp‘ , as

Y ¼

y1,1

^

y1,n1

^

yL,1

^

yL,nL

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

, Dp ¼

Dp1

^

Dp1

^

DpL

^

DpL

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

so that the model can be written in the simple form

Y ¼
XL�1

p ¼ 0

DpbpðOÞþe ð19Þ

where e is the corresponding error vector.
The PLS method involves minimizing

1

N
Y�

XL�1

p ¼ 0

DpbpðOÞ

�����
�����
2

þ
XL�1

p ¼ 0

l
yp
jPpbpj

2 ð20Þ

where N=Lm, l is the main smoothing parameter, yp’s are subsidiary smoothing parameters, and Pp represents the
orthogonal projections onto the RKHS in the smoothing spline ANOVA model.

Conditional on the smoothing parameters l and yp, Gu and Wahba (1993a) give the estimates that minimize (20) as follows:

b̂pðOÞ ¼UphpþQpcp ð21Þ

where Up ¼ ð1,okÞ
m
k ¼ 1, Qp ¼ ypRpðX,XÞ, and RpðX,XÞ ¼ fRpðok,ok0 Þg

m
k,k0 ¼ 1, where Rpðok,ok0 Þ ¼ �k4ðjoj�oj0 jÞ, where k4ðxÞ ¼

B4ðxÞ=4! and B4(x) = x4
�2x3+x2

�1/30 is the fourth-order Bernoulli polynomial. The hp and cp vectors can be obtained as follows.
Let D = {D0, y, DL�1}, U = diag{U0,y,UL�1}, H¼ fh00, . . . ,h0L�1g

0, Q = diag{Q0,y,QL�1} and C ¼ fc00, . . . ,c0L�1g
0, then the PLS estimate

of bðOÞ is given by

b̂ðXÞ ¼UHþQC ð22Þ
Please cite this article as: Stoffer, D.S., et al., Smoothing spline ANOPOW. J. Statist. Plann. Inference (2010), doi:10.1016/
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where

N�1jY�DUH�DQCj2þlC0QC ð23Þ

H¼ fU0D0M�1DUg�1U0D0M�1Y ð24Þ

and

C ¼DM�1
fI�DUðU0D0M�1DUÞ�1U0D0M�1gY ð25Þ

where M¼DQD0 þNlI.
When we only need an estimate for a specific o0, we can also use the PLSE at any given frequency, say o0, from Eq. (21):

b̂pðo0Þ ¼Up0hpþQp0cp ð26Þ

where Up0 ¼ ð1,o0Þ,Qp0 ¼ ypRpðo0,XÞ and Rpðo0,XÞ ¼ fRpðo0,okÞg
m
k ¼ 1, for p = 0,y, L�1; see also Guo et al. (2003) and

Wahba (1990). The consistency of PLSE for a single log-spectrum has been proved by Guo et al. (2003).
The smoothing parameters, l and yp, can be chosen by generalized cross validation or by generalized maximum

likelihood (GML) as discussed in Wahba (1985). We focus on the GML criterion, which following Wahba (1985) using our
notation, reduces to minimizing

Vðl,ypÞ ¼
Y 0F2ðF

0
2DQD0F2þNlIÞ�1F 02Y

½detðF 02DQD0F2þNlIÞ�1=ðN�4Þ
ð27Þ

where F2 is given by the QR decomposition of DU: DU ¼ ðF1,F2Þð
G
0Þ where (F1,F2) is orthogonal and G is upper triangular; the

dimension of F1 is N 	 ð2L�1Þ and the dimension of F2 is N 	1.
In the next section we discuss the construction of approximate simultaneous confidence intervals for the function

estimates. Our preference is to accomplish this task via bootstrapping.

4. Bootstrap simultaneous confidence intervals

In this section, we present a method to obtain approximate simultaneous confidence intervals that can be
used to determine the frequencies where the spectra differ, if any. To make pairwise comparisons, we make use of
0.0
frequency

-6

-4

-2

0

2

4

6

0.1 0.2 0.3 0.4 0.5

Fig. 1. Simulation example comparing L=2 groups of four AR(1) processes (f¼ 70:9 and n=500): True b1ðoÞ ¼D12ðoÞ (solid line in the middle), the

estimated function, b̂1ðoÞ (dotted line in the middle), and the approximate 95% upper and lower limits (dashed lines) for b1ðoÞ based on the bootstrap

method with NB = 20 and R = 10.

Please cite this article as: Stoffer, D.S., et al., Smoothing spline ANOPOW. J. Statist. Plann. Inference (2010), doi:10.1016/
j.jspi.2010.04.043

dx.doi.org/10.1016/j.jspi.2010.04.043
dx.doi.org/10.1016/j.jspi.2010.04.043


ARTICLE IN PRESS

D.S. Stoffer et al. / Journal of Statistical Planning and Inference ] (]]]]) ]]]–]]]6
the fact that

D‘1 ,‘2
ðoÞ ¼ b‘1

ðoÞ�b‘2
ðoÞ ¼ log

f‘1
ðoÞ

f‘2
ðoÞ ¼ g‘1

ðoÞ�g‘1
ðoÞ ð28Þ

for ‘1,‘2 ¼ 1, . . . ,L, where we take bLðoÞ � 0. Note that inferences for individual b�functions can be carried out by setting
‘2 ¼ L in (28); i.e., D‘1 ,LðoÞ ¼ b‘1

ðoÞ. Our basic interest is in whether D‘1 ,‘2
ðoÞ � 0, but the essential goal is to find the

frequencies for which D‘1 ,‘2
ðoÞ differs from zero.

Our technique employs the bootstrap using the ideas presented in Olshen et al. (1989). To this end, suppose we obtain a
random sample of size NB time series with replacement from our original collection of time series. Compute from this
bootstrap sample, NB estimates of DðokÞ, say D̂

ðiÞ
ðokÞ, for i=1,y, NB, and from those compute the average D̂BðokÞ and

variance ŝ2
D,BðokÞ. For each positive c, let

F̂ BðcÞ ¼
1

NB
# D̂ðokÞ : max

ok

D̂ðokÞ�D̂ BðokÞ

ŝD,BðokÞ

�����
�����rc

( )
ð29Þ

Here, D̂ðokÞ refers to the estimate of DðokÞ for an individual member of the original time series. Now, repeat the bootstrap
sampling and computation of F̂ BðcÞ, say R times and let F̂ BðcÞ denote the average of the R F̂ BðcÞ. For 0oao1, we define ca by

ca ¼minfc : F̂ BðcÞZag ð30Þ

so that ca is the approximate critical value used in our intervals of the form D̂ ðokÞ�caŝD,BðokÞ and D̂ ðokÞþcaŝD,BðokÞ for all
ok. Justification for this technique is provided in Olshen et al. (1989).

5. Simulation example

As a simple example, we simulated L=2 groups of series, each with length n=500, and with four, n1=n2=4, series in each
group. Each group of series was generated from a Gaussian AR(1) process, yðtÞ ¼fyðt�1ÞþwðtÞ, with f¼ 0:9 for the first
group and f¼�0:9 for the second group; in both cases wðtÞ � iid N(0,1). In this case the model for the group log-spectrum
is g‘ðoÞ ¼ b0ðoÞþb1ðoÞd‘,1, for ‘¼ 1,2, where d is the Kronecker delta, so that b1ðoÞ ¼D12ðoÞ ¼ g1ðoÞ�g2ðoÞ. Fig. 1 displays
the true b1ðoÞ (solid line in the middle), b̂1ðoÞ’s (dotted line in the middle), and the approximate 95% upper and lower
0.0
frequency frequency

frequency frequency

frequency frequency

frequency frequency

Earthquakes Explosions

2
-2

-8

2
-2
-6

0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

0.0 0.1 0.2 0.3 0.4 0.50.0 0.1 0.2 0.3 0.4 0.5

0.0 0.1 0.2 0.3 0.4 0.50.0 0.1 0.2 0.3 0.4 0.5
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-10
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2
-2

-8
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-2
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Fig. 2. The centered log-periodograms, y‘,jðokÞ, for the earthquake series (left) and the explosion series (right) as well as the corresponding smoothing

spline estimates.
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limits (dashed lines) for b1ðoÞ based on the bootstrap method with NB = 20 and R = 10. The empirical critical value in this
case is c0.95 = 2.82.

6. Analysis of earthquakes and explosions

In this section we analyze the S-waves of four earthquakes (group 1) and four explosions (group 2) taken from
Shumway and Stoffer (2006). Each series consists of n=512 points. Fig. 2 shows the centered log-periodograms,
y‘,jðokÞ ¼ logI‘,jðokÞþg, for n‘ ¼ 4 and ‘¼ 1,2, from each group as well as the corresponding smoothing spline estimates
with smoothing parameters l¼ 0:0001 and y1 ¼ 1. As in the simulated example of the previous section, the model for the
group log-spectrum is g‘ðoÞ ¼ b0ðoÞþb1ðoÞd‘,1, for ‘¼ 1,2, where d is the Kronecker delta, so that b1ðoÞ ¼D12ðoÞ ¼
g1ðoÞ�g2ðoÞ is the parameter function of interest; in particular, the interest is in discovering the frequencies for which
b̂1ðoÞ is non-zero.

Fig. 3 (left) displays F̂ BðcÞ with NB = 20 and R = 10 for obtaining the critical value for the simultaneous approximate

confidence intervals for b1ðoÞ and we note that c0.95 = 2.45 in this case. Fig. 3 (right) shows b̂1ðokÞ’s along with the

approximate 95% simultaneous confidence intervals. Note that b1ðoÞ40 implies that the spectral power an earthquake is
greater than that of explosion at o and vice versa. Based on our results, we conclude that the two groups differ over almost
the entire frequency range with the spectral power of the earthquakes being greater than that of explosions at the lower
frequencies, say o 2 ð0,0:15Þ, and the spectral power of the explosion being greater than that of the earthquakes at the
midrange frequencies, say o 2 ð0:15,0:40Þ.
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