Estimation and Identification of Space-Time ARMAX
Models in the Presence of Missing Data

DAVID S. STOFFER*

A method for modeling and fitting multivariate spatial time
series data based on current spatial methodology coupled
with the parameterization of the ARMAX model is pre-
sented. Because of the physical constraints imposed on
multivariate data collection in both space and time, the
estimation and identification procedures tolerate general
patterns of missing or incomplete data.
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1. INTRODUCTION

Many problems that arise in the physical sciences require
investigators to work with data in both time and space.
For example, in the general marine fisheries context, one
observes fisheries data (catch and effort) as well as envi-
ronmental data at sensors that are distributed in space as
well as time (see Mendelssohn 1982; Mendelssohn and Roy
1985). The fact that observations occurring contiguously
in space can be expected to be as correlated as observations
from adjacent time periods introduces several complica-
tions into traditional analyses. First, the volume of data
increases as one may collect multivariate m X 1 vector
series observed at L locations for n time points, producing
mLn intercorrelated data points. Second, physical con-
straints imposed on a data collection system of such mag-
nitude almost guarantee that there will be stretches where
observations are missed in time or space for certain com-
ponents of the vector series. Moreover, the dynamics of
such a system may be influenced by covariates whose ef-
fects must be explained.

Several approaches to space-time modeling have been
developed that depend on the completeness of the sample
in space and time. If the vector process is spatially sta-
tionary and observed on a rectangular grid at each point
in time, a rather detailed procedure for fitting a class of
space-time models is described in Larimore (1977). If the
spatial sampling is irregular, structural models given in CIiff
and Ord (1981) or Pfeifer and Deutsch (1980a) may be
more appropriate.

Recently, missing data problems for nonspatial systems
have successfully been approached using the state-space
methodology. For example, Jones (1980) and Harvey and
Pierse (1984) used the Kalman filter to obtain maximum
likelihood estimates of parameters of autoregressive mov-
ing average (ARMA) processes when observations are
missed. Shumway and Stoffer (1982) used the expectation-
maximization (EM) algorithm in conjunction with the state-
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space model for smoothing and forecasting time series with
missing or incomplete observations. Methods similar to the
state-space setup have also been considered for univariate
processes in the presence of missing or irregular observa-
tions using Parzen’s ‘“‘asymptotically stationary” process
(Parzen 1963), which takes values of 0 or 1 depending on
whether an observation is missed or observed. Dunsmuir
and Robinson (1981a) successfully used this method in es-
timating parameters of univariate ARMA models when
data are missing or unequally spaced.

This article combines existing spatial methodology, such
as that used in the space-time ARMA model (see Pfeifer
and Deutsch 1980b) or in kriging (see Matheron 1963),
along with the parameterization of the ARMAX model
(Hannan 1976) and the aforementioned missing data mod-
ification techniques, to formulate a model that can be used
for modeling and forecasting the dynamics of multivariate
populations that are functionally dependent on time as well
as space. Furthermore, this model tolerates very general
patterns of missing or incomplete data and allows, if de-
sired, the effects of covariates to be measured.

2. THE GENERAL MODEL

Suppose that the p X 1 population vector denoted by x,
is of interest to an investigator. We may decompose x, into
components x;(t) denoting the state m X 1 vector at coor-
dinate j and time ¢ so that x; = (x{(¢), . . . , x.(¢)), where
L is the number of sites. Further suppose that a u X 1
covariate vector z; = (zy(¢), z,(¢), . . ., z,(t)) may be
measured concurrently. In the marine fisheries context, for
example, x,(¢) could represent a fish catch per unit effort
at coordinate j and time ¢, whereas z, may measure sea
surface temperature and wind velocity. In an air pollution
context, x,(f) could represent the pollution index at a cer-
tain location during day ¢, and z, may be an environmental
vector of wind speed and direction, temperature, and hu-
midity at time .

A model describing the current state x, in terms of the
previous states x,_, X,_,, . . . , X,_, and covariates z,, z,_i,

., Z,_y may be expressed in the form

k

q
X, =2 DAx, + D2 Vz , +w, =1, (2.1)
=1

1=0

where A, is the p X p diagonal space-time transition matrix
at lag j and D, is a known p X p distance matrix (not
necessarily symmetric) that expresses the spatial relation-
ship between the L sites at lag j. Assume that within the
range of interest, D, is independent of time ¢. The p X u
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regression matrices, ¥, (! = 0, . . . , k) express the rela-
tionship between the current state and the covariates, and
w,is p X 1 white noise with covariance matrix Q. Equation
(2.1) is a space-time extension of the ARMAX model con-
sidered by Hannan (1976). Assume that x, and z, are zero-
mean processes and that z, is generated by a generalized
linear process, z, = 27 A6, where 2, |4 < e, and
{&} and {w/} are mutually independent. The nonzero-mean
case is discussed in the Appendix.

As an example, a second order (¢ = 2) space-time AR-
MAX model that depends only on the current covariate
(k = 0) may be written for the ith sensor, 1 =i < p, as

Xq = (dijAyxe—1; + dyyidoixi_a))

N

1

J

+ D vz, + wi (22)
j=1
where A, = diag(dy, . . ., 4,), 1 = 1,2, and D, = {d,;;}.
It is clear from (2.2) that the same regression coefficient,
i (1 =a=gq,1=0>b = p), after being modified by the
distance function, is used for a given time lag, a, and a
given location, b, to obtain forecasts.

In this manner we see that the model (2.1) is essentially
a spatially constrained regression of the present state at
location i, x,;, on the past values x,_;4, . . ., Xeips o v o s
Xi_g1s - -+ > Xi—qp, Where the ijth element of the spatial
weighting matrix at lag [, d,;, is a measure of “inverse
distance” from site i to site j at lag [. Note that d,; is not
required to be equal to d, ;. This allows the investigator to
include a sense of direction in the map. For example, if
there is movement from site i to site j the “distance” J;
from site i to site j may be considered smaller than the
“distance” J;; from site j to site i. In this case, d;' > J;!
and we may want to put d,; > d, ;. This idea is used in the
example given in Section 4.

The specification of the spatial weighting matrices, D,
(1 =1 = q) must be left to the investigator of the space-
time system so that as many of the physical characteristics
and constraints of the map are employed in the model.

For regularly spaced systems, equal scaled weighting is
typically employed (see Besag 1974; Pfeifer and Deutsch
1980b). The weighting is a measure of inverse distance
between neighbors in which the nearest neighbors have the
most effect on each other. The weighting matrices adopted
in the equal scaled scheme are of the following form:

Wf;‘) = 1/n® if i and j are kth-order neighbors

=0 otherwise,

where Wl.(]k) is the ijth element of a p X p spatial weighting
matrix W®, and n® is the number of kth-order neighbors
possessed by site i. Thus all nonzero weights of a given
site for a particular spatial order are equal and scaled so
that 2; Wi = 1. To employ this idea in the space-time
ARMAX (STARMAX) model, one could choose the spa-
tial distance matrices in (2.1) to be of the form D, = I +
WO + WO + .- + W®, where v, is the spatial order of
the jth autoregressive term.
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For irregularly spaced systems a reasonable method of
spatial weighting is based on the inverse of the Euclidean
distance between each location (see Cliff and Ord 1981).
For example, if ¢; is the distance between location i and
location j, possible weighting functions might be d,; = c[J;,
+ 1]7%, dyy; = c[d} + 1]7% or d;;, = ¢ exp[—ad,;], for
some constants ¢ > 0 and « = 0. To include the effects of
order on spatial weighting, one might choose d,; = c[d,
+ 1]"*or d;; = c exp[ — ald, ] to mention a few examples.
As previously mentioned, this approach may be modified
by allowing d,; # d,; when i # j.

An alternative to the use of weighting as a function of
the distance between sites is to use the variogram to spa-
tially weight the data. The variogram is currently used in
kriging (see Matheron 1963) as a method for estimating
the spatial variation of the map.

Let o, be the distance between site i and site j, and
suppose that for¢t = 1,2, .. .,

E[xr+1,i - xrj] =0
and

var[x,,,; — x,] = 21,(5;)-

The function #,(d;) is then called the variogram at lag /.
These assumptions imply that the spatial variation is sta-
tionary in its increments and is weaker than the assumption
of second-order spatial stationarity.

The estimation of the variogram depends on the partic-
ular phenomenon being studied. If the sites are at regular
spacing, the variogram may be estimated as follows:

Ni(d)

- . 2
2Nl(5) kgl (yk+l,1 yk,1+6) 5

m(d) = (23)
where (Y11, Yii+s) IS @ pair of observations that are / time
units apart and ¢ distance apart, and N,(J) is the number
of such pairs.

If the experimental sites are irregularly spaced, they may
be grouped by classes of distance J and angle ¢, for ex-
ample, all pairs of points less than one mile apart, from
one to two miles apart, and so forth, separating the pairs
oriented approximately north, south, east, and west.

After estimating #,(d) one may wish to propose and fit
a theoretical model. Possible models, whose behaviors are
based on the sample variogram of actual data (see Del-
homme 1976; Yakowitz and Szidarovszky 1985) and are
widely used, are the following:

1. 7(6) = c|d]*, called the generalized linear model
2. m(9) = c[36/2a — 3 (6/a)’] fd=a
=c if 6 > a,

called the spherical model

3. m(d) = c{l — exp[—(d/a)]}, called the exponential
model

4. n(0) = c{l — exp[—(d/a)*]}, called the Gaussian
model.

In each of these models, ¢ and a are functions of /. Note
that the models are nondecreasing in distance.
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Once the experimenter has arrived at a suitable measure
of spatial variation via the variogram, the measure may be
used to create the spatial weighting matrices D based on
inverse distance. For example, if #,(d;) is the variogram
between site i and site j at lag /, one could choose D, to
have elements of the form d,,, = c[y,(d;) + 1] *ord,, =
¢ - exp{—a #,(J;)} for some constants « = 0 and ¢ > 0.
Again note that one may choose the spatial weights so that
dl,i/ # dl,/'i fori # ]

To allow for the possibility of missing or irregular data,
consider two observation equations. The first assumes no

observational error:
y. = Mx,, l=t=n, (2.4)

where M, is a random or nonrandom sequence of p X p
diagonal matrices, M, = diag(M,,, . . . , M,,), of zeros and
ones in such a way that

M, =1
=0

if x,; is observed

if x,; is not observed.

The second observation equation allows for the existence
of observation noise:

Yo = M[x, + v, l=st=mn,

(2.5)

where v, is p X 1 white noise with covariance matrix R
and is independent of {w;} and {¢}. In Equation (2.4), y,
= x, if x,; is observed and y, = 0 if x, is not observed. In
observation equation (2.5), y; = x, + v, if there is an
observation at sensor i at time ¢, and y,; = 0 otherwise.

The following assumption can be made on the M, se-
quence to assure the asymptotic stationarity of the obser-
vations. Define for/ = 0,1, ...,n — 1,

n—-1
CM(I) = n_l 2 MIJp M1+1, (26)
t=1
where J, is a p X p matrix of ones. Assume that Cy(/)
converges in some sense (see the Appendix) toap X p
matrix ©(/) as n — o for each /. Note that the ijth element
of Cy(/) is the proportion of times that site i and site j have
been observed together at lag /. For example, if the sam-
pling scheme is binomial, Pr{M, = 1} = 6, (i = 1, ...,
p), with M,; and M,; being independent random variables
for t # s or i # j, it is seen that Cy(l) converges almost
surely and in mean square to

0@,
o() = :
symmetric KO

where k() = 1if I = 0 and k(I) = 2 otherwise.

3. ESTIMATION AND IDENTIFICATION

The identification of the order of the STARMAX model
and the subsequent estimation of parameters is based on
the estimation of the autocovariance structure of the state
process x,. Since autocovariance estimates will differ de-
pending on the particular choice of an observation equa-
tion, (2.4) or (2.5), each case will be considered separately.

0102 te 610[)
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If the mean is unknown, it will be necessary to adjust the
estimates of this section. The mean correction procedure
is discussed in the Appendix.

The parameter estimates obtained in this section may be
used as initial consistent estimates to some iterative scheme.
If we assume that the noise processes are Gaussian, we
may rely on maximum likelihood techniques. Various it-
erative estimation procedures based on maximum likeli-
hood methods are available. For example, one may use
scoring or Newton—Raphson techniques to solve the non-
linear equations that result from differentiating the log-
likelihood function (see Gupta and Mehra 1974). An
alternate procedure uses the EM algorithm to obtain an
iterative scheme for estimating the parameters of the state-
space model (see Shumway and Stoffer 1982).

One advantage of the STARMAX model (2.1) over the
unconstrained ARMAX model is that there are gp(p —
1) fewer parameters to be estimated (because the A, are
constrained to be diagonal), thus decreasing computing
time and costs when an iterative scheme is employed. Note
that this reduction is considerable if the size of the map
(L) or the number of different types of observations at
each site (m) is large.

31 No Observational Noise Model

Throughout this section assume that the model is (2.1)-
(2.4).

Define the p X p matrix

n—1

Cy(l) =n! 2 y:yz’+la

t=1

0=1Il<n, (3.1)

so that the sample autocovariance at lag [ between the ith
and jth observation components is

n—1

Cy:,‘(l) =n! 2 YiYiij-
t=1

Then, under the assumptions stated in the Appendix,
Equation (A.1), a mean squared consistent, asymptotically
normal estimate of I',(/) = E{xx/,,} is [':({), whose ijth
component (1 =i, j = p) is given by

]’)Xl](l) = Cytj(l)/CMij(l)’ (32)

provided that Cy;(l) # 0, where Cy;(!) is the ijth com-
ponent of Cy(!). Details are provided in the Appendix.

If a covariate, z,, is included in the model, the estimate
of the cross-covariance is obtained analogously. Setting
I'.(l) = E{x.z,.}, the corresponding estimate is I',,(1),
whose ijth component (1 <= i<p,1=<j=u)is

?lej(l) = Cyzt;(l)/CMu(O), (33)

where C,.(I) = n=' 2=} y,z/,,, and Cy;(0) is the proportion
of times y, = x, is observed. The u X u autocovariance
of the covariates, I',(I) = E{z,z,.,}, is estimated in the usual
fashion. If z, is not fully observable, one may consider an
observation equation of the form of (2.4) for the covariates
and proceed accordingly.

It is convenient to rewrite the model (2.1)—(2.4) in the

O0=l<n,

0=l<n,
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following manner to ease the notation and the calculations.
Let¥ = [Wy, ¥,,...,¥]bethe p X r matrix of regres-
sion coefficients [where we have set r = u(k + 1)] and let

Z(t) = (z/, zi-1, . . ., z/_1)' be the p X r vector of co-
variates. The gth-order model, Equation (2.1), is now writ-
ten as
_ X -1
X, = Dq)[Z(t) :| + wy, (34)
where D = [Dy, ..., D, I,]isthe p X p(g + 1) matrix

of spatial weights, ® 1s the p(g + 1) x (pq + r) block-
diagonal matrix of regression parameters A, . . s A, Y,
and X(t — 1) is the pg x 1 vector X'(t — 1) = (x, 1
y X(_g).
The observation equation (2.4) is rewritten so that

X(t
Y(r) = M() [Z((t;] t=1,...,n,  (3.5)
or explicitly
yt Mz 0 x‘
Vi1 M:q X1
Yi—g+1 0 M, Xi—g+1
Z(1) 1,1\Z()

By post-multiplying Equation (3.4) by [X'(t — 1), Z'(¢)]
and taking expectation, a Yule-Walker-type equation is
obtained (see Anderson 1971; Box and Jenkins 1970):

1"xX( - 1) = Do l-‘XX(O)’ (36)
where FxX(_ 1) = [Fx(_ 1), ce ey Fx(_q)’ FXZ(O)]’ and
I.(0) (=1 - T(-q+1) )
r (1) F(0) “T(=q +2) T2
Iyx(0) = N : : ,
(g -1 Lg-2- T «(0) I2(q)
Iz(-1) [2(-2) ‘Tz(—q) I',(0)

where we have setI',,(l) = E{x,Z'(t + D)}, 1 = 0, =1, £2,

. From Equation (3.6) we obtain mean squared con-
sistent, asymptotically multivariate normal estimates of the
elements of Ay, . . ., A,, and ¥, namely,

A; = diag(D;'G),
¥ = A,
where the p X (pg + r) matrix
Lo (= D[Fxx(0)] ! = [Gl|Gz||Gq|H]

is written with G, (1 =i < ¢) being a p X p submatrix
and H belng a p X r submatrix. In (3.7) the following
notation is used: If A is a p X p matrix of reals {a;}, then
diag(A) means the p X p diagonal matrix with diagonal
elements {a,;, ax, . . . , a,}.

The computational procedure for evaluating these ma-
trices is simple. To obtain I',x(—1) and I’ xx(0) for a par-
ticular order g, correct the data for the mean, stack the

l=i=gq,

(3.7)
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data in the form of (3.5), and calculate

Co(-1) t;ﬂy,Y t-1), (3.8)
Com(—1) = 21 MJM(t - 1) (3.9)
[where J,is a p X (pq + r; matrix of ones],
Cn0) = 3 YOV, (3.10)
and q
Cu0) = 3, MM (3.11)

t=q

[where Jis a (pq + r) X (pq + r) matrix of ones]. Then,
the estimate of I',x(—1) is computed by dividing the ijth
element of C,y(—1) by the ijth element of C,,,,(—1) pro-
vided it is not zero. Similarly, the estimate of 'yx(0) is
computed by dividing the ijth element of Cy(0) by the
ijth element of Cy,(0) provided it is not zero. An alternate
computational procedure is to calculate the p X p matrices
C,(l) and Cy(!) given in (3.1) and (2.6), respectively, and
the p X r matrices C,;(/) as described in (3.3), and then
stack these in the manner of I',x(—1) and I'xx(0).

To test the null hypothesis that x, is generated by an
autoregression of order g; against the alternative hypoth-
esis that it is of order ¢ > g;, one may proceed as follows.
For a particular order ¢, estimate A, . . ., A, and ¥ via
Equation (3.7). Note that there are p(q + r) unknown
regression parameters, and under the null hypothesis, p(q,
+ r) of them are unspecified. A mean squared consistent
estimate of Q = E{ww,} when the model order is q is

0, = L) - 3 DAL - ¥11,0). (.12)

The estimates I',(j), j = 0, 1, ..., g, and I'.2(0) are
obtained from the appropriate components of ',y(—1) and
Txx(0).

As a test statistic, one computes (see Hannan 1970, sec.
VI1.2)

UIN = (¢ + 1)p. p. pgs} = det(Q,)/det(Q,) (3.13)
and treats
N =@ +1p - ¥p + ¢p)n U,

a1+ g, =q, (3.14)

where N = p~'tr{Zr,
of freedom.

If no covariate is present in the model, one sets ¥ = 0
in (3.12) and = 01in (3.14). If a covariate is present, one
may compare the effects of the covariate by including ¥
= 0 in the null hypothesis. In this case, Q, is computed
with ¥ = 0 in (3 12) and the number of effective obser-
vations, which is the multiplier of —In U, is adjusted to

M.}, as a chi square with p g, degrees
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Figure 1. Spatial Grid Used in This Example.

{N — qp — i[p X (g, + r)p]}- The degrees of freedom
in this case are p(q, + r).

3.2 Observational Noise Model

In some applications it may be appropriate to assume
that the data, when observable, are noisy data because of
conditions inherent in the data collection process. In this
case, the observation model given by (2.5) would be more
suitable than the previous model (2.4).

With observation noise present, we have

E{yzyrlﬂ} = Mrrx(l)MrH + MlRég)Mt+l (315)

[see (2.5)], where ¢ is the Kronecker §, and hence the
estimates (3.2) no longer directly admit an estimate of
I'.(0). Thus we must adjust the estimates of the previous
section to accommodate the inclusion of the noise covari-
ance structure at lag [ = 0.

To accomplish this, post-multiply Equation (3.4) by

30

-

28

26

24

e

224
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(X'(t-q—-1),Z'0] =[x/ g1, - -
obtain the Yule—-Walker-type equation

Fix(—q — 1) = DPTyx(—9q), (3.16)

where ['y(—q — 1) = [ (=q — 1), . . ., [(—29), [2(0)]
and

y Xi_gg, Z'(2)] toO

Fx(—q)
|n(-g+ ) L(-@) (-2 +2) LQ
Fx(_ 1) Iﬂx(_z) ‘ Fx(_q) rxz(Q)
er(_q - 1) l—‘xZ(_q - 2) o IixZ(_zq) FZ(O)

so that, for the present, the problem of estimating I',(0) is
avoided.

Hence the modified estimates of the diagonal elements
of the regression parameters A, A,, . . ., A, and ¥ are

A, = diag(D;'G)), 1=i=gq

A A

¥ = H,

(3.17)
where we have written the p X (pg + r) matrix

Fix(=q = D[I'xx(—9)]" = [Gl G, Gq ﬁ]
As in the previous section, G, (1 < i < q) are p X p
submatrices and H is a p X r submatrix. In addition, +
is used to denote generalized inverse.

Since the preceding estimates are based on the autoco-
variance estimates of the form given in (3.2), we again
have mean squared consistent, asymptotically multivariate
normal estimates of A;, . . ., A, and V.

The computational aspects are again relatively simple.
Using notation similar to (3.8)—(3.11), one would calculate
Cy(—q — 1) and (=g — 1), Cyy(—¢q) and Cyy(—9),
and then proceed analogously to the estimation process
discussed after (3.11).

To identify the order of the autoregression that generates

20—
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Figure 2. Sea Surface Temperature for Region 1.
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Figure 3. Sea Surface Temperature for Region 2.

x,, we first obtain a consistent estimate of I',(0). By post-
multiplying Equation (2.1) by x,_, and taking expectation,

DA T(0) = I'i(=1)
- inAfo(f - 1) — ¥I(1) (3.18)
iz
is obtained, which suggests the consistent estimate
1,0 = (DAY~ [fx(‘l)
- éa&m -1 - W;Z(l)] . (3.19)

One may now proceed to test the null hypothesis that x, is
generated by an autoregression of order g, versus the al-
ternate that it is of order ¢ > g, following the procedure

30+
29 4

28

27

26 -

e

discussed in the previous section [(3.12)—(3.14)], using the
estimates of (3.17) and (3.19).

Once a particular order has been identified, the covari-
ance structure of the observational noise, R, may be es-
timated. From (3.15), we see that the ijth component of
R, say R;, gets a contribution from time ¢ only when M
= M, = 1. Hence a mean squared consistent estimate of
Ris

Ri/‘ = ni]_'l 2 {}"n'}’zj} - ?xi/(0)9 1=i,j=p, (320
=1

where n; = 2/, MM, is the number of times that site
and site j are observed at the same time, and %,;;(0) is the
ijth component of I',(0) given in (3.19). Note that R is
easily computed by dividing the ijth element of 2;;; Yy
by the ijth element of 2%, M,J,M, and subtracting 1,(0).
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Figure 4. Sea Surface Temperature for Region 3.
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Figure 5. Sea Surface Temperature for Region 4.

4. AN EXAMPLE

As an example of the kind of space-time data that can
be analyzed, fisheries and oceanographic data supplied by
R. Mendelssohn from the National Oceanic and Atmos-
pheric Administration, Pacific Environmental Group,
Monterey, California are considered. The fisheries data
used in this example are from the French, Ivory Coast,
Senegalese, and Moroccan tuna fleets. In particular, the
total catch per unit effort (CPUE) of yellowfin (100 kg per
hours fished) at five locations in the Gulf of Guinea by
fortnight (24 per year) for 10 years since 1969 is analyzed.
The spatial grid (see Fig. 1) was determined by R. Men-
delssohn and Cl. Roy of the National Marine Fisheries
(U.S.A)) and Centre Oceanologique de Bretagne (France),
respectively. As a covariate, sea surface temperature (SST)

29—

26

23

20

e

17

-4

is included in the model. Such environmental data are col-
lected routinely by the National Climatic Center from mer-
chant ships in the area of study. The SST series for each
of the five regions are shown in Figures 2-6. For a detailed
discussion of the spatial considerations and of the data
collection, verification, and reporting procedures, see
Mendelssohn and Roy (1985).

One problem in the analysis of such data is that whereas
environmental data are fairly complete, the CPUE series
have many missing values because there are no data for
an area at any time during which there was no fishing in
that area. For the five regions analyzed in this example,
the number of missing observations for the 10 years con-
sidered was 36 (15.0%) for region 1, 8 (3.3%) for region
2, 31 (12.9%) for region 3, 3 (1.3%) for region 4, and 65
(27.1%) for region 5. To alleviate this problem it was as-
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v v 1 v v 7
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"j v L
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T T

T
1971 1972
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T T T T T v 1 7 \J T T \
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T T T T
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Figure 6. Sea Surface Temperature for Region 5.
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sumed that the observations could be modeled by Equation
(2.4).

Another problem in the analysis of such a large data set
is that of resolving the space and time relationships among
several variables at once. This problem, however, can be
approached via the distance matrices in model (2.1). In
this example the model was weighted by the squared in-
verse of the approximate variogram at various space-time
lags. Specifically, let y,; be an observation at location i,
time ¢, and let

1 Mo

by TR — . — . 2 / / =
61,1] 2N,](l) ,___21 (}’r+1,z yl,/) ) l 7é] 1, c ey 5

[see (2.3)], where N(1) is the number of such (y,,;, y:,)
pairs in which neither is missing. The spatial weighting
matrices D, = {d,;} at time lag [ consist of clements d;,,

12

SELSL LI,

$22288000000
338888sccee

S280ee

A eens

1969 1970 1971 1972 1973

cecene,
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pt-£1 1

769

Sccctcccccccccncnee

Scccccccnne

1975

Figure 7. Observed and Predicted CPUE Series for Region 1: ---, observed; —, predicted.

1976 1977 1978 1979

(I + d,;)* (@ #j)and dy; = 1 (i = j). The actual values
for time lags 1 and 2 are

[ 1.000 .030 .028 .062 .065

052 1.000 .037 .08 .090

D, =| .029 .038 1.000 .115 .141
047 089 .095 1.000 .507

051 .071 .062 .527 1.000

and

[1.000 .025 .026 .063 .070

048 1.000 .030 .103 .092

D,=| .030 .039 1.000 .093 .159
051  .093 .097 1.000 .447

| 047 074 065 .444 1.000

IV TS

ceee
ecscsscccess
SSss0000

1976 1977

1978

Figure 8. Observed and Predicted CPUE Series for Region 2: ---, observed; —, predicted.
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Note that as discussed in Section 2, the distance matrices
D, and D, are not symmetric.

To identify the order of model (2.1), the null hypothesis
H: model order = g versus the alternate hypothesis A:
model order = g + 1forqg = 0,1,2,. . . ,wassequentially
tested. Each model included the effects of the covariate
SST (in degrees Celsius) at lag zero, and the variables were
corrected for the mean. The value of the test statistic (3.14)
for each test was 319.27 when ¢ = 0, 17.48 when g = 1,
and approximately 0 when ¢ = 2. Comparing these w1th
a chi square with 5 df, the order of the model was identified
as q = 2.

The parameter estimates, when the order of the model
is ¢ = 2, are as follows:

1974

Figure 9. Observed and Predicted CPUE Series for Region 3: ---

Journal of the American Statistical Association, September 1986
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Teeas
con
L
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, observed; —, predicted.
[ — 189 —.399 —.606 —.292 255
X -.009 -.225 -—.287 .015 272
v =| -.013 -.051 231 038 —.417 |,
.033 .023 378 127 —.221
.026 .000 -.110 .095 147
[ 4.752 505 528 347 142
X 2978 .621 —.049 —.306
0= 2.795 .096 —.146
symmetric 381 .106
i .349

Figures 7-11 show the results of the one-step-ahead pre-
diction from the estimated model. Missing data (no effort)
as well as zero data (observations in which there is effort

Al = diag(.262, .271, .408, .473, .864), b}lt no catf:h) ar'e entered as zero. This', however, is not
X visually misleading because of the scaling factors of the
A, = diag(—.085, .128, .261, —.135, —.187), plots and the fact that for regions 1, 2, 3, and 4, missing
7.5-
sﬁ
‘ %
H]
4.5 i
1
3- | = §.
1.54" :
ki L\ﬁ &d A‘ A
0 : j ‘ A A
1969 1970 1971 197 1974 1975 1976 1977 1978 1979

Figure 10. Observed and Predicted CPUE Series for Region 4: ---,

observed; —, predicted.
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Figure 11. Observed and Predicted CPUE Series for Region 5: ---, observed; —, predicted.

data are scattered and surrounded by zero observations
(no catch). In region 5, before 1974, first-quarter zero val-
ues are approximately 50% missing data; after 1974, first-
quarter zero values are almost all missing data. As seen
from the Q matrix, the best predictions are in regions 4
and 5, followed by regions 2 and 3, and finally region 1.
The main difference between the observed and predicted
series seems to occur at maximum values of the peaks in
CPUE. This is especially true when the maximum of the
peaks are well beyond the range of most of the data and
is most predominant in regions 1, 2, and 3.

APPENDIX: AUTOCOVARIANCE ESTIMATION

The estimation of the autocovariance structure of x, is discussed
briefly here. For futher details, refer to Parzen (1963) and Duns-
muir and Robinson (1981b).

Assume that x,is a p X 1 stationary zero-mean time series with
autocovariance I',(/) = E{xx/,;}. Consider the p X 1 vector of
observations y, = Mx,, where M, = diag(M,,, ..., M,) is a
sequence of random or nonrandom p X p matrices with diagonal
elements of 0 or 1 depending on whether x, is missed or observed,
respectively. Assume that

n—1

lim Cy(/) = limn~' >, MJ,M,,, =

n—x

o() (A.1)

n—sx =1

exists in some sense (mean squared convergence is required in
the stochastic case) for each / = 0, where J,is a p X p matrix of
ones.

The autocovariance between the ith and jth observation at lag
lis

E{Yuy,+1.,} = MuMMI./y.n](l)’ 12 0’ (Az)

where y,,(!) is the ijth component of T, (/). It is clear from (A.2)
that the observations are not stationary; however, they are
asymptotically stationary in the sense that

n—1

lim C,(/) = limn' >, yy.., = [,()

n—x n—ox =1

(A.3)

exists in mean square for each / = 0. Denoting the ijth component
of I',({) by »,,(/), we may write

h() = 0,0y, (D), 1=0, (A.4)

where 6,(!) is the ijth component of ©(/).
Thus, if ,(/) # 0, the estimate given in (3.2), namely

P, = C,, (D) Cy, (D), Cy,(1) #0,1=0,

is mean squared consistent for y,, (/). This estimate, for univariate
processes, was first suggested by Parzen (1962). The asymptotic
normality of the autocovariance estimates is discussed in Duns-
muir and Robinson (1981b).

In the case when observation white noise is present—that is,
y, = M|]x, + v], where {v} and {x,} are mutually independent—
(A.2) becomes

E{yuyHU} = MMMHIJ})M/(I) + MIIMI+[./5£)RI]’ 12 0’ (AS)

where R, = cov(v,, v,). Now the observations are asymptotically
stationary with
hu() = 0,y () + 0,(D%R,, =0,  (A.6)

being the mean squared limit of C,,(/). Thus, if 0,(/) # 0, the
mean squared consistent estimate of y,, (/) is

?,\11(1) = Cyl/(l)/CMl/(l)a Cm:/(l) ;é 0’ l = 1

Moreover, if $,,(0) is a mean squared consistent estimate of ,,(0)
[see (3.19)], a mean squared consistent estimate of R, is given
by

(A7)

R, = C,,(0)/Cyy(0) = %,,(0).

If it is necessary to adjust the estimates for the mean, one
proceeds as follows. An estimate of the p x 1 vector E(x,) = p
isy = (yi,...,Yy,), where

y1=2_yu EM,,, i:1,...
t=1 =1

(A.8)

) P- (A.9)

Under the assumptions stated before, it is clear that y is mean
squared consistent for x. This, of course, is true regardless of
which equation, (2.4) or (2.5), is driving the observations. It can
then be shown that the estimates

n—1

CV‘I(I) =n" 2 MHMHI.;(YH = Y)Yty — y/): =0, (A.10)
t=1
behave as the C,, (/) in the limit.

[Received April 1984. Revised May 1985.]
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