
FITTING STOCHASTIC VOLATILITY MODELS IN THE PRESENCE
OF IRREGULAR SAMPLING VIA PARTICLE METHODS

AND THE EM ALGORITHM

By Jeongeun Kim and David S. Stoffer

University of Maryland, Baltimore and University of Pittsburgh

First Version received April 2006

Abstract. Stochastic volatility (SV) models have become increasingly popular for
explaining the behaviour of financial variables such as stock prices and exchange rates,
and their popularity has resulted in several different proposed approaches to estimating
the parameters of the model. An important feature of financial data, which is commonly
ignored, is the occurrence of irregular sampling because of holidays or unexpected events.
We present a method that can handle the estimation problem of SV models when the
sampling is somewhat irregular. The basic idea of our approach is to combine the
expectation-maximization (EM) algorithm with particle filters and smoothers in order to
estimate parameters of the model. In addition, we expand the scope of application of SV
models by adopting a normal mixture, with unknown parameters, for the observational
error term rather than assuming a log-chi-squared distribution. We address the problems
by using state–space models and imputation. Finally, we present simulation studies and
real data analyses to establish the viability of the proposed method.

Keywords. EM algorithm; financial time series; missing data; mixtures of normals;
particle filtering; particle smoothing; state–space model; stochastic volatility.

1. INTRODUCTION

The stochastic volatility (SV) model proposed by Taylor (1982) has become
increasingly popular for explaining the behaviour of financial time series, and its
popularity has resulted in several different approaches to parameter estimation. An
important feature of financial data, which is commonly ignored, is the existence of
irregular sampling. For example, when the holiday schedules of the financial
markets are different, we can experience days when somemarket prices are missing.
Although it may be rare, stretches of data may not be available for various reasons
such as unexpected political events, or natural orman-madedisasters. Furthermore,
inconsistent, unlikely or impossible values may have been input into the data file.
Often,missing observations in financial series have been handled by ad hocmethods
such as ignoring the problem, averaging or aggregation. We present a method to
handle the problem of parameter estimation for SV models when the sampling is
somewhat irregular. In addition, various authors have argued that financial data
often have heavier tails than can be captured by the standard SV model (see, e.g.
Shephard, 1996, pp. 40–1; Kim et al., 1998, pp. 385–7; Bai et al., 2003).
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To expand the scope of applications and to deal with the problem of heavy tails,
we model the observational errors using a normal mixture distribution with
unknown parameters for the observation errors as was done in Shumway and
Stoffer (2006, Sect. 6.10) and Stoffer andWall (2004). We present the details of this
robust model in Section 2. For model fitting in the presence of missing or irregular
observations, we combine the expectation-maximization (EM) algorithm with
particle filters and smoothers to estimate the parameters of the model. In the EM
framework, we must calculate the expected likelihood. The expected likelihood,
however, cannot be calculated directly, and hence we adopt particle filters and
smoothers. Our technique is detailed in Section 3, and a general discussion of
particle filtering and smoothing is presented in Appendix A. The convergence of
our method is discussed in Appendix B. To solve the irregular data problem, we use
an imputation technique based on a property of the state–space model; this
technique is detailed in Section 4. Finally, to demonstrate the viability of our
methods, we perform several numerical exercises and data analyses in Section 5.

In the standard SV model framework, the data are returns, r, that are generated
from a probability model f(rjh), where h is a vector of volatilities, and this
unobserved vector h has a probabilistic structure f(hjh), where h is a vector of
parameters (see Jacquier et al., 1994 or Shephard, 1996 for details). In the
standard form of the model, volatility is modelled as an AR process,

ht ¼ /ht�1 þ wt; ð1Þ

and the returns are given by

rt ¼ b exp
ht

2

� �
�t; ð2Þ

where wt �
i:i:d:Nð0;QÞ; h0 � Nðl0; r

2
0Þ, �t �

i:i:d:Nð0; 1Þ and fwtg and f�tg are indepen-
dent processes. We note again that the assumption that �t in eqn (2) is Gaussian,
which was most likely inherited from the autoregressive conditionally hetero-
scedastic (ARCH) model, is often criticized as an assumption that is not valid for
most financial data. This assumption will be dropped in Section 2.

Equation (2) is typically linearized by taking the logarithm of the squared
returns, which results in the equation

yt ¼ aþ ht þ vt; ð3Þ

where yt ¼ logðr2t Þ, a ¼ logðb2Þ þ Eðlogð�2t ÞÞ, vt ¼ logð�2t Þ � Eðlog �2t Þ. Note
that �2t � v21, so that vt has a centred log-v21 distribution.

Equations (1) and (3) represent the standard univariate SV model and together
they form a linear, non-Gaussian, state–space model for which (3) is the
observation equation and (1) is the state equation. If the observational error
process, vt, were Gaussian, the model could be fit using standard techniques (e.g.
Shumway and Stoffer, 2006, Ch. 6). The fact that the model is non-Gaussian,
however, leads to several complications. Various approaches for parameter
estimation for SV models have been proposed. Some of the approaches are
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efficient and others are not. The lack of analytic likelihoods makes the estimation
problem difficult, and so either likelihood approximation methods or numerical
methods have been considered. Likelihood approximation methods use simpler,
easy to handle, likelihood functions that are similar to the true likelihood of the
model, whereas numerical methods use Monte Carlo techniques to approximate
the true model likelihood. In general, likelihood approximation methods are
easier to perform than numerically intensive methods. There is a possibility,
however, that the estimation results might be inaccurate because the
approximations may be poor at times. Numerically intensive methods have
recently become popular because of relatively cheap computing costs. Their
strong point is that they use an exact likelihood, but it may take a longer time to
obtain stable parameter estimates because of the complexity of the likelihood.

Simulation methods for classical inference applied to SV models were discussed
in Danielson (1994) and Sandmann and Koopman (1998). Mellino and Turnbull
(1990) used a generalized method of moments (GMM) approach. Harvey et al.
(1994) proposed a quasi-maximum likelihood approach that approximates the SV
model to a linear Gaussian model, and used the well-developed estimation
method for the linear Gaussian models. Durbin and Koopman (2000) used the
idea of linearization of general state–space models and matched terms in the
likelihood or posterior of a linearized model to those of a linear Gaussian model.
As a result, the estimation techniques used for the linear Gaussian model can be
applied to general state–space models. Liesenfeld and Richard (2003) used a
maximum likelihood approach based upon efficient importance sampling.
Shumway and Stoffer (2006, Sect. 6.10) and Stoffer and Wall (2004) used an
approximate likelihood in a normal mixtures setting. Their basic idea, which was
inspired by Kim et al. (1998), was to approximate the observation error, vt, in eqn
(3) by a mixture of normals with unknown parameters, and then use resampling
techniques to obtain the sampling distribution of the parameter estimates.
A Bayesian approach, based on Markov chain Monte Carlo (MCMC) methods,
was taken by Jacquier et al. (1994). Chib et al. (2002) and Kim et al. (1998) also
adopted these methods. The basic idea was to get a random sample from the
posterior density of parameters, given the data. In these approaches, parameters
are assumed to have some prior density, while in the classical analysis, parameters
are fixed and unknown, as in our study.

Recently, particle methods (sequential Monte Carlo or sequential importance
sampling) have been applied to the SV model. Because particle filters are designed
to get the samples of hidden states, given parameters and data, in order to
estimate parameters, it will be necessary to either adopt other methods for the
parameter estimation, or to modify the particle filtering method to embrace the
parameters as a part of the hidden states. A standard approach consists of setting
a prior distribution on the unknown parameters and then using that to write an
extended state–space model; that is, the parameters are considered hidden states.
Estimation can be accomplished by applying a filtering algorithm as was done in
Kitagawa and Sato (2001). Doucet and Tadic (2003) combined particle filtering
methods and gradient algorithms.
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Missing (or irregular) data problems have been addressed in Bayesian, MCMC
approaches, by sampling from the conditional distribution of the missing data,
given all other parameters and state variables (see, e.g. Kim et al., 1998). In such a
setting, missing observations are considered unknown parameters, so if there are
manymissing observations or the sampling is highly irregular, thesemethodswill be
less effective. In our case, we deal with the fixed parameter problem and adopt the
EM algorithm to handle irregular sampling. Our method is easy to understand and
apply to the missing (or irregular) data case, because the estimation results can be
obtained by a slight modification of the algorithm for the case of regular sampling.

2. A MIXTURE MODEL

We now consider a modification of the standard SV model given by eqns (1) and
(3), wherein it is assumed that the observational noise process, vt, is a mixture of
two normals with unknown parameters. As previously indicated, the model was
first proposed in Shumway and Stoffer (2006, Sect. 6.10) and was used again in
Stoffer and Wall (2004). The idea, however, was inspired by Kim et al. (1998),
who used mixtures of normals to approximate the log of a chi-squared
distribution.

The model first presented in Shumway and Stoffer (2006, Sect. 6.10) retains the
state equation for the volatility as

ht ¼ /ht�1 þ wt; ð1Þ

but the observation eqn (3) is changed to

yt ¼ aþ xt þ vt and vt ¼ Itzt1 þ ð1� ItÞzt0 � lp; ð4Þ

with zt0 �
i:i:d:

Nð0;R0Þ, zt1 �
i:i:d:

N(l, R1), and It is an indicator variable, It �
i:i:d:

BðpÞ,
where p is an unknown mixing probability; i.e. Pr(It ¼ 1) ¼ p ¼ 1 � Pr(It ¼ 0).
In this model, the standard SV model log v21 distributional assumption on vt has
been replaced by a mixture of normals distributional assumption; the term �lp, is
added to make vt a zero-mean variable. The observational noise is constructed
using two normals: the N(0, R0) term is used to account for most of the noise,
whereas the N(l, R1) term is used to account for the lower tail behaviour of the
noise. Consequently, l will be negative and R1 � R0 � c > 0, where c is a
constant; i.e. R0 is bounded away from zero. This restriction is enough to ensure a
global maximizer of the likelihood function (see Hathaway, 1985 for details).

Equation (4) is equivalent to

yt ¼ ht þ vt and vt ¼ Itzt1 þ ð1� ItÞzt0 ð5Þ

with zt0 �
i:i:d:

Nðm0;R0Þ, zt1 �
i:i:d:

Nðm1;R1Þ, m0 ¼ a � lp, m1 ¼ a þ (1 � p)l, where
a and l are unknown parameters, and It �

i:i:d:BðpÞ. Although the original version of
the model was written as (1)–(4), we find it easier to work with the model written
as it is in (1)–(5).
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The main advantage of the mixture SV model, (1)–(5), over the standard SV
model, (1)–(3), is its flexibility. In the standard model, the distribution of vt
contains no unknown parameters, and hence no room is left for deviation from
the assumed model. If the observational error distribution is very different from
the assumed logðv21Þ distribution, the resulting parameter estimation is
inconsistent. An example is shown in Section 5.1. The normal mixtures
distribution, however, allows for flexibility. In the modified model, vt has its
own parameter set, fm0, m1, R0, R1, pg, which must be estimated along with the
state parameters, f/, Qg. Therefore, this modification can give better parameter
estimates for f/, Qg because it uses an observational error distribution that
reflects the data structure, rather than the predetermined observational error of
the standard model.

The mixture assumption for the observational noise used in Kim et al. (1998)
was primarily a device to approximate the logðv21Þ distribution; their mixture had
no unknown parameters and hence did not use data that fit the errors. Shumway
and Stoffer (2006, Sect. 6.10) and subsequently Stoffer and Wall (2004) realized
that the logðv21Þ assumption was too restrictive and hence they used the model as
given in eqn (1)–(4). Since then, a number of authors have picked up on the idea,
and we mention a few. Durham (2007) proposed a mixture model that is identical
to the one presented in Shumway and Stoffer (2006, Sect. 6.10) and subsequently
Stoffer and Wall (2004); in that article, Durham’s estimation is based on the
simulated maximum likelihood approach via importance sampling, which is
similar to Liesenfeld and Richard (2003). Our goal in this article is not so much to
establish another Monte Carlo method for estimating the parameters of an SV
model, but rather to establish a method for estimation when the sampling is
irregular.

3. PARAMETER ESTIMATION FOR THE MIXTURE SV MODEL

In this section, we consider parameter estimation for the SV mixture model when
the data are sampled at regular intervals and there are no missing observations.
The proof of the convergence of the algorithm presented in this section is given in
Appendix B. After developing a proper method for this case, we discuss its
modification in the irregular data case in Section 4. Although there are
alternatives to fitting the mixture SV model to data, e.g. Stoffer and Wall
(2004), the main advantage of the EM algorithm is its ability to handle irregular
sampling and missing data.

As previously stated, the assumption that R0/R1 is bounded away from zero is
enough to ensure a global maximizer of the likelihood function. In essence, we are
preforming restricted maximum likelihood estimation. There is, however, no need
to worry about this restriction in the iterative procedure because the two normal
distributions are well separated and problems will occur only if the sample size is
unduly small or if the model is misspecified in such a way that the observational
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noise is truly Gaussian and not skewed left. These problems are not likely to occur
in the analysis of returns; moreover, an investigator could detect such problems
prior to using our proposed algorithm. Examples of the separation of the two
normal components in the mixture can been seen in the examples in Shumway and
Stoffer (2006, Sect. 6.10).

The basic strategy for the mixture model, (1)–(5), is to apply the EM algorithm
to the complete data, fh0,h1, . . . , hn; I1, . . . , In; y1, . . . , yng, where fh0, h1, . . . , hn;
I1, . . . , Ing are considered missing. The observations, Yn ¼ fy1, . . . , yng, are
considered the incomplete data, and in general, we define Yt ¼ fy1, . . . , ytg.

The result of using the filtering step will be particle filters that are random
samples from f(ht,ItjYt). Because the standard SV model, (1)–(3), falls into the
category of general state–space models, the algorithm explained in Appendix A
can be applied directly. The difference between the standard model and the
mixture model is that fItg is also sampled by assuming that fItg is another state
variable. The state equation of this model can be re-expressed as follows:

ht

It

� �
¼ / 0

0 0

� �
ht�1
It�1

� �
þ wt

Bt

� �
; ð6Þ

where wt �
i:i:d:Nð0;QÞ and Bt �

i:i:d:BðpÞ.

3.1. Filtering

The following is the algorithm for the filtering step, from which we will obtain M
samples from f(ht, ItjYt) for each t.
(1) Generate f ðjÞ0 � Nðl0; r

2
0Þ.

(2) For t ¼ 1, . . . , n:
(a) Generate random numbers wðjÞt � Nð0;QÞ and BðjÞt � BðpÞ, for j ¼

1, . . . ,M.
(b) Compute pðjÞt ¼ /f ðjÞt�1 þ wðjÞt and ~pðjÞt ¼ BðjÞt .
(c) Compute

wðjÞt ¼ f ðytjpðjÞt ; ~pðjÞt Þ /
1

R�ðjÞt

exp
ðyt � pðjÞt � l�ðjÞt Þ2

2R�ðjÞt

 !
;

where l�ðjÞt ¼ ~pðjÞt m1 þ ð1 � ~pðjÞt Þm0 andR�ðjÞt ¼ ~pðjÞt R1 þ ð1 � ~pðjÞt ÞR0.

(d) Generate ½f ðjÞt ; ~f
ðjÞ
t � by resampling with weights, wðjÞt .

3.2. Smoothing

In the smoothing step, we get particle smoothers that are needed to get the
expected likelihood in the expectation step of the EM algorithm. The following is
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the algorithm to get particle smoothers, which is a slight modification of Godsill
et al. (2004).

Suppose that equally weighted particles fðf ðjÞt ; ~f ðjÞt Þ : j ¼ 1; . . . ;Mg from
f(ht, ItjYt) are available for t ¼ 1, . . . , n from the filtering step.

(1) Choose ½sðjÞn ;~sðjÞn � ¼ ½f ðiÞn ; ~f
ðiÞ
n � with probability 1/M.

(2) For n � 1 to 0,
(a) Calculate

wðiÞtjtþ1 / f ðsðjÞtþ1;~s
ðjÞ
tþ1jf

ðiÞ
t ; ~f ðiÞt Þ / exp �

ðsðjÞtþ1 � /f ðiÞt Þ2

2Q

 !
p~sðjÞtþ1ð1� pÞ1�~sðjÞtþ1

for each i.
(b) Choose ½sðjÞt ;~sðjÞt � ¼ ½f

ðiÞ
t ; ~f ðiÞt � with probability wðiÞtjtþ1

(3) Repeat (1)–(2) for j ¼ 1, . . . ,M.

At the end of this smoothing step, we have fsðjÞ0 ; . . . ; sðjÞn ;~sðjÞ1 ; . . . ;~sðjÞn ;
j ¼ 1; . . . ;Mg, which are random samples from f(h0, . . . , hn,I1, . . . , InjYn).
These values can then be used for the estimation step, which we discuss
next.

3.3. Estimation

In the estimation step, we update the parameters via the EM algorithm. To apply
the EM algorithm, we must calculate the complete data likelihood, L(h), and the
expected likelihood given the data, Yn, and the current value of the parameters,
say h0.

The complete data likelihood is given by

LðhÞ ¼ fhðh0Þ
Yn

t¼1
fhðhtjht�1Þ

Yn

t¼1
fhðItÞ

Yn

t¼1
fhðytjht; ItÞ

¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2

0

q exp �ðh0 � l0Þ2

2r2
0

 !Yn

t¼1

1ffiffiffiffiffiffiffiffiffi
2pQ
p exp �ðht � /ht�1Þ2

2Q

 !

�
Yn

t¼1
pItð1� pÞ1�It

Yn

t¼1

1ffiffiffiffiffiffiffiffiffiffi
2pR�t

p exp �ðyt � ht � l�t Þ
2

2R�t

 !
;

where R�t ¼ ItR1 þ ð1 � ItÞR0; l�t ¼ Itm1 þ ð1 � ItÞm0.
The expected conditional complete data likelihood is given by
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Qðhjh0Þ ¼ Eð�2 log LðhÞjYn; h
0Þ

¼ log r2
0 þ
ðhn

0 � l0Þ2 þ pn
0

r2
0

þ
Xn

t¼1
logQþ

ðhn
t � /hn

t�1Þ
2 þ P n

t þ /2P n
t�1 � 2/P n

t;t�1
Q

" #

� 2 log p
Xn

t¼1
pn

t þ logð1� pÞ n�
Xn

t¼1
pn

t

 !" #

þ
X1
i¼0

Xn

t¼1
pn

ti logRi

" #
þ
X1
i¼0

1

Ri

Xn

t¼1
fEðItiðyt � ht � miÞ2jYnÞg

" #
; ð7Þ

where hn
t ¼ E½ht j Yn; h

0�; P n
t;s ¼ E½ðht � hn

t Þðhs � hn
s Þ j Yn; h

0�; P n
t ¼ P n

t;t, pn
t1 ¼ pn

t ¼
E½It j Yn; h

0�, pn
t0 ¼ 1 � pn

t , It1 ¼ It, It0 ¼ 1 � It.
By minimizing eqn (7), we get the following estimates.

/̂ ¼ S10

S00
; Q̂ ¼ 1

n
S11 �

S2
10

S00

� �
; p̂ ¼

Pn
t¼1 pn

t

n
;

m̂0 ¼
Pn

t¼1 E½ð1� ItÞðyt � htÞjYn; h
0�

n�
Pn

t¼1 pn
t

; m̂1 ¼
Pn

t¼1 E½Itðyt � htÞjYn; h
0�Pn

t¼1 pn
t

;

R̂0 ¼
P

E½ð1� ItÞððyt � ht � m̂0Þ2jYn; h
0Þ�

n�
Pn

t¼1 pn
t

; R̂1 ¼
P

E½ðItÞððyt � ht � m̂1Þ2ÞjYn; h
0�Pn

t¼1 pn
t

;

where

S00 ¼
Xn

t¼1
ðhn

t�1Þ
2þ P n

t�1

� �
; S11 ¼

Xn

t¼1
ðhn

t Þ
2þ P n

t

� �
and S10 ¼

Xn

t¼1
ðhn

t�1hn
t þ P n

t;t�1Þ:

Because the smoothing step returns the particle smoothers, we can obtain the
EM estimates by plugging the sample means of the functions of particle
smoothers for the expectations. For example,

ĥn
t ¼

PM
j¼1 s

ðjÞ
t

M
:

3.4. Initial parameter selection

A common criticism of the EM algorithm is that convergence can be quite slow
(see Mclachlan and Krishnan, 1997). In order to save computing time, it is
essential to start with good initial parameters. Anderson et al. (1969) suggested
consistent estimates of the parameters of a linear system based on the idea of the
method of moments. We apply their idea to get initial parameters.
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For the mixture SV model, there are seven parameters that need initial values.
To apply the method of moments, seven equations should be solved, and so it is a
complex job. Therefore, we assume that we can choose reasonable values for the
initial parameters for the normal mixtures and applied the method of moments
for three other parameters. In many cases involving univariate data, the choice of
the starting values will not be critical for estimating the parameters of normal
mixtures (see Everitt and Hand, 1981).
(1) Pick arbitrary initial parameters for m1 � m0 ¼ k1;R

ð0Þ
0 ¼ k2;R

ð0Þ
1 ¼

k3; pð0Þ ¼ k4. As a general procedure, we have found choosing k1 ¼ �3,
k2 ¼ k3 ¼ 4, and k4 ¼ 0.5 reasonable starting values; these values are used
in the examples of Section 5.

(2) Set mð0Þ0 ¼ �y � pð0Þðm1 � m0Þ ¼ �y � k4k1 and mð0Þ1 ¼ k1 þ mð0Þ0 .
(3) Set

/ð0Þ ¼
ĉyð2Þ
ĉyð1Þ

where ĉyðhÞ ¼ n�1
Xn�h

t¼1
ðytþh � �yÞðyt � �yÞ:

(4) Set

Qð0Þ ¼ n�1
Xn

t¼2
fðyt � �yÞ � /ðyt�1 � �yÞg2 � r̂2

vð1� /̂2Þ:

Here, r̂2
v ¼ ð1 � k4Þðk21k4 þ k2Þ þ k3k4; alternatively, one may set r̂2

v ¼ 5, which
is approximately the variance of the log-v21 distribution.

3.5. Relative likelihood

Next, we introduce the relative likelihood that we use to assess convergence. It is
known that the likelihood of the observed data increases at every iteration of the
EM algorithm. But, because our E-step uses particles to calculate the expected
likelihood, the monotone likelihood property is not guaranteed. Hence, it is
essential to monitor the behaviour of the relative likelihood. Generically, let y
represent the incomplete data and (x, y) represent the complete data. The relative
likelihood is the ratio of the likelihoods at two adjacent iterations, and the relative
likelihood at the ith iteration, fh(i)(y)/fh(i�1)(y), can be calculated by using the
complete likelihood as follows:

fhðiÞ ðyÞ
fhði�1Þ ðyÞ

¼
fhðiÞ ðx; yÞ
fhðiÞ ðx j yÞ

�
fhði�1Þ ðx j yÞ
fhði�1Þ ðx; yÞ

:

Multiplying by fh(i)(x j y) and integrating out x, we get

fhðiÞ ðyÞ
fhði�1Þ ðyÞ

¼ Ehði�1Þ
fhðiÞ ðx; yÞ

fhði�1Þ ðx; yÞ

����y� 	
:
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Hence, the change in the log-likelihood is

Dlyðhði�1Þ; hðiÞÞ ¼ log fhðiÞ ðyÞ � log fhði�1Þ ðyÞ ¼ log
fhðiÞ ðyÞ

fhði�1Þ ðyÞ

¼ logEhði�1Þ
fhðiÞ ðx; yÞ

fhði�1Þ ðx; yÞ

����y� 	
: ð8Þ

If we have samples fxjgM
j¼1 from fh(i�1)(xjy), then Dly(h

(i�1)) can be estimated by

D̂lyðhði�1Þ; hðiÞÞ ¼ log
1

M

XM
j¼1

fhðiÞ ðxj; yÞ
fhði�1Þ ðxj; yÞ

 !
: ð9Þ

This is a slight modification of Chan and Ledolter (1995).

3.6. Stopping rule

Theoretically, the suggested algorithm converges when the particle size, M, and
the number of iterations, N, are large. Practically, it is not possible to use
infinitely large M and N. The choice of N is important because the estimates
from the procedure when stopped too early may not be reliable. Moreover, it
is waste of time and resources to run the procedure longer than necessary.
Many numerical procedures involving iterative solutions compare estimates
from contiguous iterations; if the two are close enough, the process is
considered to have converged, and is stopped. Equivalently, the relative
likelihood can be considered as a measure in assessing convergence. In
particular, a small relative likelihood signifies that a process may be
approaching convergence. We recommend that the procedure be stopped if
the relative likelihood is less than the predetermined tolerance level �.
Regarding the selection of M, Tanner (1996) mentioned that it is wise to
start with a small M, increasing it as the current approximation moves closer
to the maximum likelihood estimate in the Markov chain EM setting. We
apply Tanner’s method to save computing time.

3.7. Standard errors

Standard errors can be estimated from the inverse of observed information.
Again, we generically denote the incomplete data as y and the complete data as
(x, y). According to Louis (1982), because f(yjh) is hard to handle in the EM
setting, the observed information is calculated using the complete likelihood. The
observed information of the data, y, is
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� @
2 log f ðyjhÞ
@h@h0

¼ E � @2

@h@h0
log f ðx; yjhÞ

����y� 	
� E

@

@h
log f ðx; yjhÞ

� �
@

@h0
log f ðx; yjhÞ

� �����y� 	
þ E

@

@h
log f ðx; yjhÞ

����y� 	
E

@

@h0
log f ðx; yjhÞ

��� y
� 	

: ð10Þ

Therefore, if xi are sampled from f(xjy), the observed information can be
estimated by

�
d@2 log f ðyjhÞ
@h@h0

¼ 1

M

XM
i¼1
� @2

@h@h0
log f ðxi; yjhÞ

� 1

M

XM
i¼1

@

@h
log f ðxi; yjhÞ

� �
@

@h0
log f ðxi; yjhÞ

� �

þ 1

M

XM
i¼1

@

@h
log f ðxi; yjhÞ

 !
1

M

XM
i¼1

@

@h0
log f ðxi; yjhÞ

 !
: ð11Þ

Once we obtain the observed information matrix, the variance–covariance
matrix can be obtained by taking the inverse. However, when we applied eqn (11)
to simulated and real data sets, we met a practical problem; the information
matrices may not be positive-definite. We suggest using a 5% trimmed mean
instead of the sample mean for the elements of the second term in eqn (11) to solve
this problem. (For details and justification, see Appendix C of Kim, 2005.)

4. IRREGULAR OR MISSING DATA

In this section, we consider the case in which the sampling period, Dt, may be
irregular. In particular, we assume that the irregular sampling is of the type where,
for the most part, Dt ¼ 1 unit of time, but where it may be possible that Dt ¼ k
units of time, where k ¼ 2, 3, . . . , is relatively small. In this case, we write the data
as y1, . . . , yn, where it is possible that certain values may not be observed. The
fundamental idea is to make the data complete by filling in unobserved values,
and then use the method presented in Section 3.

To cover the possibility of irregular data, we write the model as

ht ¼ /ht�1 þ wt; yt ¼ atht þ vt; ð12Þ

where at ¼ 1 if there is an observation at time t, and at ¼ 0 otherwise. As before,
we have wt �

i:i:d:Nð0;QÞ, vt �
i:i:d: ItNðm1;R1Þ þ ð1 � ItÞNðm0;R0Þ, It �

i:i:d:BðpÞ, and
h0 � Nðl0; r

2
0Þ.

The only difference in the algorithm for fitting the model in the irregular data
case is in the data-completion step. In the data-completion step, we fill in values
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with those generated from the model and then proceed as in the case where no
observations are missed. When at ¼ 0 in eqn (12), the observation equation can
be simplified as yt ¼ vt, which has no relation to the state variable, ht. Therefore,
when yt is not observed, it can be directly generated from the observation
equation if the parameters are given. With the addition of a data-completion step,
we possess a data set that is regularly observed, and the method proposed in
Section 3 can be applied with only slight modification. The following algorithm
can be used to fit the model in the irregular data case.

Select initial parameters hð0Þ ¼ f/ð0Þ;Qð0Þ;mð0Þ0 ;mð0Þ1 ;Rð0Þ0 ;Rð0Þ1 ; pð0Þg. For i ¼
1, 2, . . . ,:
1. Data completion: If an observation yt is unobserved (at ¼ 0), generate a

random yt from the normal mixture distribution:

yt � ItNðmði�1Þ1 ;Rði�1Þ1 Þ þ ð1� ItÞNðmði�1Þ0 ;Rði�1Þ0 Þ;

where It � B(p(i�1)). This step uses single imputation, although it is possible
to use multiple imputation here.

2. Filtering: Obtain the particle filters ðf ðjÞt ; ~f
ðjÞ
t Þ from f(ht, ItjYt, h(i�1)), j ¼

1, . . . ,M. The only modification to the filtering step of Section 3 is that, in
part (c), the weights are now

wðjÞt ¼ f ðytjpðjÞt ; ~pðjÞt Þ / exp ðyt � atp
ðjÞ
t � l�ðjÞt Þ2=2R�ðjÞt

� �
=R�ðjÞt :

3. Smoothing: Obtain the particle smoothers fsðjÞ0 ; . . . ; sðjÞn ;~sðjÞ1 ; . . . ; ~sðjÞn g from
f(h0, . . . ,hn, I1, . . . , InjYn,h

(i�1)), j ¼ 1, . . . ,M. The steps here are identical to
the smoothing steps detailed in Section 3.

4. Estimation: Update the estimates, hðiÞ ¼ f/ðiÞ;QðiÞ;mðiÞ0 ;m
ðiÞ
1 ;R

ðiÞ
0 ;R

ðiÞ
1 ; p

ðiÞg by
maximizing the expected likelihood. For this step, everything is the same as
the estimation step in Section 3, except that ht is replaced by atht in m̂0; m̂1; R̂0

and R̂1.
5. Repeat steps 1–4 until the stopping criterion is met.

5. SIMULATION STUDY AND DATA ANALYSIS

We apply the proposed method to two simulated data sets and two real data sets.
In the simulation studies, one data set is generated from the standard version of
the SV model, (1)–(3), which has the logarithm of chi-squared distribution as its
observation noise. Another data set is generated from the mixture model, (1)–(5).
For the data analyses, we consider two types of pound/dollar exchange rates to
check the performance of the proposed method for real data. In all examples, we
used the following initial values for the parameters, as specified in Section 3: k1 ¼
�3, k2 ¼ k3 ¼ 4, k4 ¼ 0.5.
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We note here that the fitting algorithm discussed in Section 3 may easily be
applied to fitting the standard SV model, (1)–(3). In this case, fh1, . . . , hn;
y1, . . . , yng are the complete data, and Yn ¼ fy1, . . . , yng, are the incomplete data.
If the expected likelihood of the complete data given Yn is available, parameter
estimates can be obtained by maximizing it. To get an expected likelihood, we
must calculate quantities such as hn

t ¼ EðhtjYnÞ and P n
t ¼ Efðht � hn

t Þ
2 j Yng.

These quantities can be calculated by using the particle filtering and smoothing
algorithms given in Appendix A as follows: Let the initial parameters be h(0). For
iteration i ¼ 1, 2, . . .:

Filtering step: obtain the particle filters via Algorithm A.1;
Smoothing step: obtain the particle smoothers via Algorithm A.2;
Estimation step: obtain the estimated parameters, h(i), by maximizing the

expected likelihood, which is calculated using the particle smoothers;

repeat until the stopping rule is met. We will use this method for fitting the
standard SV model in this section.

When fitting the mixture SV model, (1)–(5), we will use the method
presented in Section 3. When comparing results for the mixture SV model
with the results for the standard SV model, we will sometimes use the
following equivalent representation of the observation equation given in eqn
(4), that is,

yt ¼ aþ ht þ vt

where vt ¼ Itzt1 þ ð1� ItÞzt0 � lp; zt0 �i:i:d:Nð0;R0Þ; zt1 �i:i:d:Nðl;R1Þ, and It �i:i:d:BðpÞ.

5.1. Simulation studies

In the simulation studies, we generated two sets of data as follows:
Simulation A: Data were generated from the standard SV model, (1)–(3), with
the true parameter set of (/,Q,a) ¼ (0.9,1,�3).

Simulation B: Data were generated from the mixture SV model, (1)–(5), with
the true parameter set of (/,Q, m0,m1,R0,R1, p) ¼ (0.8,1.5,�4,�7,3,5,0.5).

We use the second data set to observe the behaviour of the estimation procedure
when there is a departure from the log-v21 observational error assumption. In each
case we used a sample size of n ¼ 1000; to guarantee the processes had reached
stability, we generated more than 1000 observations and discarded the initial
values. For the missing data cases, we randomly removed observations and then
applied the method in Section 4 to examine the performance of the proposed
method for missing data cases.

Table I shows the results of the estimation for Simulation A. The processes
were stopped when the value of relative likelihood was less than �, which is
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specified in the table. It can be said that the estimation procedure based on the
assumption of the standard SV model works well in the sense that the estimates
are close to the true parameters (see [1] in Table I). Furthermore, the results show
that the method based on the mixture model gives good estimates even if the true
observation noise is not a normal mixture distribution (see [2] in Table I). Next,
we randomly removed 10% of the data and applied the method presented in
Section 4; the results are listed in [3] of Table I. The results listed in [4] of Table I
apply to the case where 20% of the data are missing. Although, as the rate of
missing data increases, it gets harder to achieve a certain tolerance and a bigger
number of particles is needed, we can see that our proposed method handles
missing data cases well. Estimated standard errors of the parameter estimates are
also presented in Table I.

We then performed a similar simulation study using the data from Simulation
B, and the results are presented in Table II. The results in [1] of Table II show

TABLE I

Estimation Results for Simulation A

/ Q a
True 0.9 1 m0 m1 R0 R1 p �3

[1] 0.8783 1.4059 �2.5659
(0.0184) (0.1425) (0.1109)

[2] 0.9077 1.0180 �1.3622 �4.1971 1.8067 9.1332 0.3160 �2.2579
(0.0151) (0.0950) (0.1049) (0.3013) (0.2614) (1.0564) (0.0359)

[3] 0.8730 0.9679 �1.7672 �4.9413 2.8191 10.8303 0.2705 �2.6259
(0.0224) (0.1511) (0.2169) (0.5323) (0.3613) (1.5125) (0.0566)

[4] 0.8608 0.9064 �1.5988 �4.6787 2.8207 11.6589 0.3017 �2.5281
(0.0272) (0.1756) (0.3191) (0.4729) (0.4806) (1.5701) (0.0538)

[1] Standard SV model: no missing observations, M ¼ 1000, � ¼ 0.001. [2] Mixture SV model: no
missing observations,M ¼ 1000, � ¼ 0.001. [3]Mixture SV model: 10%missing,M ¼ 4000, � ¼ 0.001.
[4]Mixture SV model: 20% missing,M ¼ 2000, � ¼ 0.01. Standard errors are shown in parenthesis, M
is the number of particles and � is tolerance which assesses convergence.

TABLE II

Estimation results for Simulation B

/ Q m0 m1 R0 R1 p
True 0.8 1.5 �4 �7 3 5 0.5 a

[1] 0.5833 4.3719 5.7427
(0.0347) (0.3183) (0.1156)

[2] 0.7654 1.8131 �4.3240 �7.2851 3.0971 4.9751 0.4761
(0.0303) (0.2188) (0.1611) (0.2361) (0.4034) (0.5950) (0.0408)

[3] 0.7231 1.8238 �4.3254 �7.3412 3.3379 5.2886 0.4810
(0.0355) (0.2113) (0.0903) (0.2830) (0.6774) (0.8861) (0.0117)

[4] 0.7629 1.3329 �4.1378 �7.1377 3.2313 5.2576 0.4837
(0.1824) (1.6103) (1.0013) (0.5510) (0.5597) (2.6681) (0.0559)

[1] Standard SV model: no missing observations, M ¼ 1000, � ¼ 0.001. [2] Mixture SV model: no
missing observations, M ¼ 2000, � ¼ 0.001. [3] Mixture SV model: 10% missing, M ¼ 2000, � ¼ 0.01.
[4]Mixture SV model: 20% missing,M ¼ 2000, � ¼ 0.05. Standard errors are shown in parenthesis, M
is the number of particles and � is tolerance which assesses convergence.
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that when the model is the standard SV model, applying the techniques based on
that model may lead to poor estimates; i.e. when the logðv21Þ assumption is not
met, the result from the method based on that assumption is not reliable. When
the algorithm based on the mixture SV model is applied, the estimates are close to
the true parameters (see [2] of Table II. Moreover, the method based on the
normal mixture SV model works well in both cases (Simulation A and Simulation
B). From the results in [3] and [4] of Table II, we can then see that our proposed
method handles the missing data cases well.

5.2. Pound and dollar daily exchange rates

In this section we present the analysis of two data sets. The first example, which
was used in Harvey et al. (1994), is an analysis of the pound–dollar daily exchange
rates from 1 October 1981 to 28 June 1985. We analysed these data to compare
the performance of the mixture SV model, (1)–(4), along with our proposed
estimation method to that of previously suggested methods.

Table III compares the estimates based on the particle–EM procedures we have
described under the standard SV model, (1)–(3), and under the mixture SV model,
(1)–(4), to the analyses presented in Doucet and Tadic (2003) and in Durbin and
Koopman (2000). In particular, Doucet and Tadic (2003) used a batch ML
algorithm for 1000 iterations with 10,000 particles, whereas Durbin and
Koopman (2000) estimated parameters by approximating the likelihood to the
linear Gaussian model. The results of the estimation for each different approach
shown in Table III are similar. These results further validate the use of the
mixture SV model, (1)–(4), and the techniques we proposed to fit the model to
data. Finally, we note that the particle–EM method is time consuming; for
example, with the mixture SV model and M ¼ 500, the algorithm converged in
145 iterations; the filtering step took about 48 seconds to complete on average, the
smoothing step took about 145 seconds to complete on average, and the
estimation step took about half a second to complete on average. Clearly,
the smoothing step is the slowest part of the algorithm, but we note that the
calculations were performed using Matlab on a PC with a Pentium 4 CPU (3.20
GHz) and 512 MB of RAM.

In a second analysis, we consider another pound–dollar daily exchange rate
data set to study the performance of the proposed method when there is irregular

TABLE III

Estimation Results for the Pound/Dollar Exchange Rates

Method / a Q

Doucet and Tadic 0.968 �2.1737 0.0353
Durbin and Koopman 0.973 �2.1863 0.0299
Standard SV Model (1)–(3) 0.976 �2.2320 0.0255
Mixture SV Model (1)–(4) 0.978 �2.2393 0.0228
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sampling. These data are British pound and US dollar exchange rates taken from
Franses and van Dijk (2000), and expressed as the number of units of foreign
currency per US dollar. We focused on the period of 1 January 1 1996 to 31
December 1998, in which case there are 784 daily observations and 29 of them are
missing. If et represents the daily exchange rate, and rt ¼ log(et/et�1) denotes the
log return exchange rate, then our observations are defined as yt ¼ logfðrt � �rÞ2g
where �r is the sample average return. After the transformation was used to obtain
the logged squared returns, yt, there were 57 missing observations.

Figure 1 shows the plots of the data. The method presented in Section 4 was
used to fit the mixture SV model, (1)–(5). We started with 500 particles and
increased them until we achieved the tolerance 0.01. Figure 2 shows the trajectory
of parameter estimates and the history of the relative likelihood. The final
estimates, along with their standard errors, were

/̂¼0:896 ð0:027Þ; Q̂¼0:070 ð0:010Þ; m̂0¼�11:502 ð0:099Þ; m̂1¼�14:065 ð0:267Þ;
R̂0¼1:817 ð0:161Þ; R̂1¼5:420 ð0:695Þ; p̂¼0:320 ð0:034Þ:
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Figure 1. Pound/dollar daily exchange rates with missing values; the exchange rates, et (top), the log
returns, rt (middle) and the transformed log returns, yt (bottom).
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It is not easy to compare our results with those in Franses and van Dijk (2000)
because, to avoid missing data problems, they analysed weekly data by using the
exchange rate on Wednesday unless a Wednesday exchange rate was not
available. In this case, they used the exchange rate on Tuesday, or on Thursday if
Tuesday’s data were also missing.

6. DISCUSSION

In this article, we presented a mixture SV model and a strategy for fitting the
model that combines the EM algorithm and particle methods. In addition, we
presented a modification that allows the analysis of irregularly sampled data. In
addition, we showed how to use our estimation procedure when fitting standard
SV models. Simply speaking, we changed the observation error from the log-v21
distribution to a more comprehensive distribution, a mixture distribution with
two normal components. This change to the standard model allows for a more
robust fit. Finally, we presented simulation studies and real data analyses to
exhibit the viability of our proposed method.
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Figure 2. Estimation results for the pound/dollar exchange rates with missing values.
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APPENDIX A: PARTICLE FILTERS AND SMOOTHERS

In this appendix, we introduce the general concepts of particle filtering and smoothing for
state–space models. The main idea of particle methods is to represent the probability

distribution of Z, which is usually hard to obtain directly, using M particles and associated
weights, fzðjÞ;wðjÞgM

j¼1, so that the empirical distribution of particles,
PM

j¼1 wðjÞIðZ 	 zðjÞÞ=PM
j¼1 wðjÞ, replaces the cumulative density function (cdf) of Z, F(z), where I(A) is an

indicator function whose value is 1 if A is true, and 0 otherwise.
Particle filters and smoothers are sequential Monte Carlo methods grounded in particle

representations, and they can be considered as generalizations of well-known Kalman

filters and smoothers for general state–space models. Particle filters and smoothers provide
particles with associated weights to approximate the conditional density f(htjYs), where
Ys ¼ fy1, . . . , ysg. This set of particles makes it possible to approximate anything related to
their true density.

The basic strategy used to get particles of the desired density is based on sequential
importance sampling and resampling. Sequential importance sampling (SIS) is a Monte
Carlo method that forms the basis for most particle methods. The problem with SIS is

degeneracy: after a few iterations, most of the particles have very small weights and they
contribute little to the desired density p(htjYt). Resampling is designed to solve this problem
by removing particles with small weights, concentrating, instead, on particles with large

weights. A generic particle filter draws fhðjÞt gM
j¼1 using an SIS particle filter, and resamples

fhðj�Þt gM
j¼1 when degeneracy has occurred. Arulampalam et al. (2002) and Doucet et al.

(2001) are good sources of information on particle filters and their several variants.

A.1. PARTICLE FILTERING ALGORITHM

The particle filtering algorithm returns ff ðjÞt ;wðjÞt gM
j¼1, for t ¼ 1, . . . , n, where f ðjÞt represents

jth realization of particle filter and wðjÞt represents an associated weight, i.e.

f ðhtjYtÞ 

XM
j¼1

wðjÞt dðht � f ðjÞt Þ:

Kitagawa (1996) and Kitagawa and Sato (2001) suggested an algorithm for filtering in
general state–space models: ht ¼ Ft(ht�1,wt), yt ¼ Ht(ht,vt), where Ft and Ht are known

functions that may depend on parameters h; here, wt and vt are independent white-noise
processes and h0 � p0(x), wt � q(w). The following is the summary of the algorithm.

Algorithm A.1: Monte Carlo filter for general state–space models

(1) Generate a random number f ðjÞ0 � p0ðxÞ for j ¼ 1, . . . ,M.
(2) Repeat the following steps for t ¼ 1, . . . , n, where n is the length of data.

(a) Generate a random number wðjÞt � qðwÞ, for j ¼ 1, . . . ,M.

(b) Compute pðjÞt ¼ Ftðf ðjÞt�1;w
ðjÞ
t Þ, for j ¼ 1, . . . ,M.

(c) Compute wðjÞt ¼ pðyt j pðjÞt Þ, for j ¼ 1, . . . ,M.

(d) Generate f ðjÞt , for j ¼ 1, . . . ,M by resampling pð1Þt ; . . . ; pðMÞt , with weights fwtg.
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Here, M is the number of particles and p(ÆjÆ) refers to a generic conditional density. This
algorithm is the same as that of the sequential importance resampling (SIR) filter, which can

be easily derived from the SIS filter. The SIR filter chooses the conditional density of ht, given
ht�1, f(htjht�1) as a sequential importance density, q(htjht�1,Yt), and applies the resampling
step at every time index.

A.2. PARTICLE SMOOTHING ALGORITHM

A primary goal of particle smoothing algorithms is to get particle smoothers, fsðjÞt gM
j¼1, with

associated weights, fwðjÞt gM
j¼1, where

f ðhtjYnÞ 

XM
j¼1

wðjÞt dðht � sðjÞt Þ:

Theoretically, the trajectories of states fs1, . . . , sng from the f(h1, . . . , hnjYn) can be obtained

by an usual particle filtering method (e.g. given in Section A.1). However, in practice,
because the diversity of the paths of the particles is reduced by the resampling step,
smoothed estimates degenerate. In other words, only a small number of particles appear

repeatedly in earlier time points if n gets bigger. Kitagawa and Sato (2001) suggested
resampling only part of the data instead of sampling the whole path from 0 to t at time
point t in order to prevent degeneracy.

Godsill et al. (2004) suggested a new smoothing method called �particle smoother using
backwards simulation�. Unlike other smoothing methods, this method is free from
degeneracy and concerns the entire trajectory of states fh0, . . . , hng from the joint density

f(h0, . . . , hnjYn), not just the individual marginal smoothing density, f(htjYn). This particle
smoother using backward simulation assumes that the filtering has alreadybeen performed so
that the particles and associatedweights, ff ðjÞt ;wðjÞt gM

j¼1, can approximate the filtering density,
f(htjYt), by

P
wðjÞt dðht � f ðjÞt Þ=

P
wðjÞt . The following is the algorithm from Godsill et al.

(2004); by repeating this algorithmM times, we getM trajectories of the states, given the data.

Algorithm A.2: particle smoother using backward simulation

Suppose weighted particles fðf ðjÞt ;wðjÞt ÞgM
j¼1 are available for t ¼ 1, . . . , n.

For j ¼ 1, . . . ,M:
(1) Choose sðjÞn ¼ f ðiÞn with probability wðiÞn .
(2) For n � 1 to 1,

(a) Calculate wðiÞtjtþ1 / wðiÞt f ðsðjÞtþ1 j f
ðiÞ
t Þ for each i.

(b) Choose sðjÞt ¼ f ðiÞt with probability wðiÞtjtþ1.
(3) sðjÞ1:n ¼ fs

ðjÞ
1 ; . . . ; sðjÞn g is an approximate realization from p(h1, . . . , hnjYn).

APPENDIX B: PROOF OF CONVERGENCE OF THE PROPOSED
ALGORITHMS

To establish the convergence properties of the suggested algorithm presented in Section 3,

we adopt the approach of Chan and Ledolter (1995). For completeness, we restate their
theorem in terms of our problem. To ease the notation, we let X ¼ (x,y) represent the
complete data and y represent the incomplete data.
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Theorem (Chan and Ledolter, 1995). Suppose that assumptions A1–A4 stated below are
satisfied. Let h� be an isolated local maximizer of ly(h), the observed likelihood. Then there
exists a neighbourhood, say V1, of h� such that for starting values of the algorithm presented
in Section 3 inside V1 and for all �1 > 0, there exists a k0 such that P ðjhðMÞk � h � j < �1 for
some k 	 k0) ! 1 as M ! 1.

Assumptions

A1: For all h0, lX(h0) ¼ q(Z,h0), where Z is a measurable vector function of X, q is linear in
Z and lX(h0) is the complete likelihood at the parameter h0.

A2: q(Z,Æ) attains the unique global maximum atM(Z) andM is continuous in Z.

A3: The convergence, in probability, of �ZmðhÞ ! EhðZÞ as M ! 1 is uniform over
compact subsets of X where X is a parameter space, �ZmðhÞ is the sample mean of Z
values computed from the particle sample X1(h), . . . ,Xm(h).

A4: ly(h) is continuous in h.

We establish the convergence of the algorithm presented in Section 3, which pertains to the
parameter estimation for the mixture SV model, by showing that all four assumptions of
the theorem are met. We note that the convergence of the algorithm for the standard SV

model can be established in a similar manner.
The log-likelihood of the complete data for the mixture SV model is

lX ðhÞ ¼ �
1

2

"
Z1 �

1

Q
þ Z2 �

/2

Q
� 2Z3 �

/
Q

þ Z4 � �2 log
p

1� p
þ log

R1

R0
þ m2

1

R1
� m2

0

R0

� �
þ Z5 �

1

R1
� 1

R0

� �
þ Z6 � �2

m1

R1
þ 2

m0

R0

� �
þ Z7 �

1

R0
� Z8 � 2

m0

R0
þ CðhÞ

#
¼ qðZ; hÞ

where

Z ¼ ðZ1; . . . ; Z8Þ ¼
X

h2t ;
X

h2t�1;
X

htht�1;
X

It;
X
ðyt � htÞ2It;

�
X
ðyt � htÞIt;

X
ðyt � htÞ2;

X
ðyt � htÞ

�
and CðhÞ ¼ n logQ � 2n logð1 � pÞ þ n logR0 þ nðm2

0=R0Þ. Since Z is a measurable
vector function of X and q is linear in Z, the assumption A1 is satisfied. Moreover, q(Z,Æ)
attains the unique global maximum atM(Z), where

MðZÞ¼ argmax
/

q;argmax
Q

q;argmax
p

q;argmax
m1

q;argmax
m0

q;argmax
R1

q;argmax
R0

q

 !

¼ Z3

Z2
;
Z1þZ2/

2�2/Z3

n
;
Z4

n
;
Z6

Z4
;
Z8�Z6

n�Z4
;
m2

1Z4þZ5�2m1Z6

Z4
;

�
m2

0ðn�Z4ÞþðZ7�Z5Þ�2m0ðZ8�Z6Þ
n�Z4

�
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andM(Z) is continuous in Z. Furthermore, since

lyðhÞ ¼
Z Z

lX ðhÞdh1 � � � dhn dI1 � � � dIn;

ly(h) is continuous in h. Hence, the suggested algorithm satisfies A2 and A4.

To check A3, we use the convergence result of the particle smoothing algorithm
in Godsill et al. (2004). By Theorem A2 of Godsill et al. (2004), for all t 2 (1, . . . , n),
there exists ctjn(h) independent of M such that for any bounded, Borel-measurable

function / on Rn,

E
Z

/ðh1; . . . ;hnÞdpM
1:njnðh1; . . . ; hn;hÞ �

Z
/ðh1; . . . ;hnÞdp1:njnðh1; . . . ;hn;hÞ

� �2
" #

	 c1jnðhÞ
k/k2

M
: ðB:1Þ

Z
/ðh1;...;hnÞdpM

1:njnðh1;...;hn;hÞ!P
Z

/ðh1;...;hnÞdp1:njnðh1;...;hn;hÞ: ðB:2Þ

Since eqn (B.1) is equivalent to (B.2) and we can assume squared returns, and hence the

yt, are bounded by a big number (practically, we use yt��y instead of yt to prevent the
logarithm from being �1), then since Z is bounded we get �ZM ðhÞ!

P
EhðZÞ (as M ! 1).

Now, we need to show that for every � > 0 there is an integerN such thatM � N implies
P ðj�ZM ðhÞ � EhðZÞj � �Þ < � for all h 2 EwhereE is a compact subset ofX to establish the

uniform convergence. Since �ZM and Eh(Z) are continuous in h, for any �1 > 0 there exists
d1 > 0 and d2 > 0 such that jh1 � h2j< d1 implies j�ZM ðh1Þ � �ZM ðh2Þj < �1 and
jh1 � h2j < d2 implies jEh1(Z) � Eh2(Z)j < �1. Letus consider an open covering fOag of E
such thatOa ¼ fh:jh � haj < dgwhere d is the minimum of d1 and d2. Then by compactness
of E we can choose the finite subset of fOag, fOa0g,a0 ¼ 1, . . . ,K which covers E.

Then for any h in E we can find Ob such that h 2 Ob and b 2 f1, . . . ,Kg. Since
j h � hbj< d, we get j�ZM ðhÞ � �ZM ðhbÞj < �1 and jEh(Z) � Ehb

(Z)j < �1. Therefore,

P ðj�ZM ðhÞ � EhðZÞj � �Þ
	 P ðj�ZM ðhÞ � �ZM ðha0 Þj þ j�ZM ðha0 Þ � Eha0 ðZÞj þ jEha0 ðZÞ � EhðZÞj � �Þ
	 P ðj�ZM ðhÞ � �ZM ðha0 Þj � �=3Þ þ Pðj�zM ðha0 Þ � Eha0 ðZÞj � �=3Þ
þ PðjEha0 ðZÞ � EhðZÞj � �=3Þ:

The first and third terms of the above expression are less than �/3 if we let �1 ¼ �/3, and
the second term is less than �/3 by pointwise convergence for M � Na0. Thus, letting N ¼
maxNa0, we get that for every h 2 E, Pðj�ZM � EhðZj � �Þ 	 � for m � N. Hence,
because the algorithm satisfies all four assumptions of the theorem, the convergence

follows.
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