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SUMMARY

We propose a transition model for analyzing data from complex longitudinal studies. Because missing

values are practically unavoidable in large longitudinal studies, we also present a two-stage imputation

method for handling general patterns of missing values on both the outcome and the covariates by

combining multiple imputation with stochastic regression imputation. Our model is a time-varying

autoregression on the past innovations (residuals), and it can be used in cases where general dynamics

must be taken into account, and where model selection is important. The entire estimation process can

be carried out using available procedures in statistical packages such as SAS and S-PLUS. To illustrate

the viability of the proposed model and the two-stage imputation method, we analyze data collected

in an epidemiological study that focused on various factors relating to childhood growth. Finally we

present a simulation study to investigate the behavior of our two-stage imputation procedure.
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1. INTRODUCTION

There are many different modeling approaches for analyzing longitudinal studies and the choice

of a model depends, of course, on the desired goal of the study. In this article, we present

a transition model that can be useful in longitudinal studies where the data are collected at

unequally spaced time intervals and where the dynamics can change at any time point. Second,

we present methodology for the estimation of the model parameters when there are missing

observations (both responses and covariates). We suggest using a certain type of autoregressive

model with time-varying parameters in the case where the general dynamics must be taken

into account, but where careful investigation of covariates that change over time and may be

periodically missed is also important. In this case, model fitting should be simple enough to

concentrate on model selection while still accounting for the longitudinal nature of the data.

Other considerations are contending with incomplete records over time and a large number of

observations to process. The advantage of our proposed model is that it is general, it allows

for time-varying conditional variances, and it can handle observations taken during periods

of instability, at irregularly spaced intervals and with missing data. Our proposed method for

handling missing at random data is a composite of imputation methods that are described in

Little and Rubin [6]. Specifically, we suggest a two-stage procedure using multiple imputation

for the covariates and then using stochastic regression imputation for the responses.

We will present the details of our model in Section 2. Because our model is a form of

time-varying autoregression, we first give some background on the use of time series models

in longitudinal analysis. Autoregressive models with exogenous variables (ARX) are well

established and have been used in medicine for some time (e.g., Rosner, Muñoz, Tager, Speizer,

and Weiss [7]; Rosner and Muñoz [8, 9]; Zeger and Qaqish [16]; Schmid [11, 12, 13]; Icaza and

Jones [2]). For example, Rosner et al. [7] studied the stationary transition model for equally

spaced longitudinal data of the form

yi(t) =
L∑

�=1

φ� yi(t − �) +
J∑

j=1

βj xij(t) +
R∑

r=1

αr zir + εi(t),
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A TRANSITION MODEL FOR LONGITUDINAL ANALYIS WITH MISSING DATA 3

where yi(t) is the outcome of subject i at time t, xij(t) is the j-th time-dependent covariate

of subject i at time t, zir is the r-th time-independent covariate for subject i, and the εi(t)

are iid (across time and subject) N(0, σ2) errors. Efficient estimation of the model parameters

can be accomplised via ordinary least squares, and this is an advantage to using such a model.

Rosner and Muñoz [8] extended the model for missing and unequally spaced longitudinal data

using weighted nonlinear regression. They suggested using a linear interpolation for missing

covariates, however, such interpolation does not include estimation of the variability.

Schmid [11] wrote the stationary transition model in state-space form and suggested using

the EM algorithm in the presence of normally distributed outcomes and covariates that are

missing at random. For his model, the parameters are estimated using the EM algorithm in

conjunction with the Kalman filter and smoother, a technique that was proposed by Shumway

and Stoffer [14]. Missing values on discrete or other non-Gaussian variables are difficult to

handle using these algorithms. In a somewhat related idea, we also mention that Jones [3]

showed how to use the state-space model and Kalman filter recursions to fit random effects

model (Laird and Ware [4] to longitudinal data. In the case of normal observations, an explicit

EM algorithm can be formulated based on the Kalman filter and smoother (see Shumway and

Stoffer [14] or Icaza and Jones [2]). The method is developed for equally spaced longitudinal

data with missing values, and unequally spaced with different observation times for different

subjects. The same parameter estimates can also be obtained by using the SAS procedure

MIXED with special variance-covariance structures on the repeated measurements (Icaza and

Jones [2]). It is also claimed that the methods may work for handling missing continuous

covariates.

A problem with complex longitudinal studies is the inevitability of missing covariates and

missing outcomes. Fitting longitudinal models in the presence of missing data has its own

challenges because of the various ways in which data may be missed. For general patterns

of missing data, multiple imputation (Little and Rubin [6]) appears to be the best method,

and it is the method that we propose for fitting our model. We will discuss the details of our

two-stage imputation procedure that combines multiple imputation and stochastic regression
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imputation in Section 3, after we introduce the model in the following section.

2. OUR MODEL

Before presenting our model, we give some motivation. Suppose we observe outcomes yi(tk) on

individual i, for i = 1, . . . , N , at times tk for k = 0, 1, . . . , n. In addition, suppose we observe

one time-varying covariate, xi(tk). If the data are sampled at irregular time intervals, or if

the stability of the dynamics is in question, then, for k ≥ 1, we might propose a time-varying

regression with autocorrelated errors, say:

yi(tk) = β(tk)xi(tk) + ui(tk) (1)

ui(tk) = ρ(tk−1)ui(tk−1) + εi(tk), (2)

where initially, yi(t0) = β(t0)xi(t0) + εi(t0). Here, we can allow {εi(tk); k = 0, 1, . . . , n} to be

an uncorrelated sequence with time-varying variance, var{εi(tk)} = σ2
k. However, because we

can write ui(tk−1) = yi(tk−1) − β(tk−1)xi(tk−1), for k ≥ 1, the model (1)-(2) is

yi(tk) = β(tk)xi(tk) + ρ(tk−1){yi(tk−1) − β(tk−1)xi(tk−1)} + εi(tk) (3)

= ρ(tk−1)yi(tk−1) + β(tk)xi(tk) + γ(tk−1)xi(tk−1) + εi(tk) (4)

where we have written γ(tk−1) = −ρ(tk−1)β(tk−1). Model (4) is in the form of a typical

time-varying ARX model.

Now, suppose in (1) we were interested in the effect of the covariate at the previous time

point on the current response. That is, suppose in (1) we had

yi(tk) = β(tk)xi(tk) + δ(tk)xi(tk−1) + ui(tk). (5)

Then, (4) would be

yi(tk) = ρ(tk−1)yi(tk−1) + β(tk)xi(tk) +
{
δ(tk) + γ(tk−1)

}
xi(tk−1)

+ θ(tk−1)xi(tk−2) + εi(tk), (6)

where θ(tk−1) = −ρ(tk−1)δ(tk−1) This causes an identifiability problem because we cannot

distinguish the effect of xi(tk−1) on the current response. For example, if xi(tk−1) were
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A TRANSITION MODEL FOR LONGITUDINAL ANALYIS WITH MISSING DATA 5

significant in (6), we would not know if it was because the covariate was influencing the

outcome at the previous time point (γ(tk−1) �= 0), at the current time point (δ(tk) �= 0), or

both.

To overcome this problem, we suggest using an innovations (residuals) form of the model.

That is, in (2), we replace ui(tk−1) by

ûi(tk−1) = yi(tk−1) − β̂(tk−1)xi(tk−1) = yi(tk−1) − ŷi(tk−1),

where β̂(tk−1) is the estimate obtained from the regression of yi(tk−1) on xi(tk−1). Thus, it is

seen from (3) that the model (1)-(2) will now be

yi(tk) = β(tk)xi(tk) + ρ(tk−1){yi(tk−1) − ŷi(tk−1)} + εi(tk). (7)

Hence, including the covariate from a previous time point, as in (5), is no longer a problem.

So, for example, using the innovations form of the model, (6) would now be

yi(tk) = ρ(tk−1)
{
yi(tk−1) − ŷi(tk−1)

}
+ β(tk)xi(tk) + δ(tk)xi(tk−1) + εi(tk), (8)

which separates the effect of xi(tk−1) on the current response.

We are now ready to specify the general model. As in the motivating example, suppose we

observe outcomes yi(tk) on individual i, for i = 1, . . . , N , at times tk for k = 0, 1, . . . , n. In

addition, suppose we observe time dependent covariates, xij(tk), for j = 1, . . . , J and time

independent covariates zir for r = 1, . . . , R. Then, the basic general model at time tk, is of the

form

yi(tk) =
pk∑

�=1

φ(tk−�)
{
yi(tk−�)− ŷi(tk−�)

}
+

qk∑
�=0

J∑
j=1

βj(tk−�)xij(tk−�)+
R∑

r=1

αr,kzir + εi(tk), (9)

where ŷi(tk−�), for � = 1, . . . , pk, denotes the predicted values from previous fits. Note that the

orders of the regression on the innovations, pk ≤ k, and the regression on the time dependent

covariates, qk ≤ k, are allowed to change with time. In addition, J or R in (9) may change

with k, although we have not shown this fact explicitly. Note that the regression parameters

are allowed to change with time. We further assume the εi(tk) are normal errors that are

independent across subject i, and time tk, with time-varying variance, var{εi(tk)} = σ2
k. The
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6 T. KORU-SENGUL, D. S. STOFFER, AND N. L. DAY

independence of the errors across time is not restrictive because the innovations will account

for serial correlation as discussed in the motivation for the model. A simple example of the

utility of this model was given in Shumway and Stoffer ([15], Example 6.23).

The advantage to (9) is that it can be fit sequentially in time using ordinary least squares.

Moreover, observations taken at future time points can be processed without having to

reanalyze the entire data set. Of course, adjustments will have to be made if any observations

are missing, and we discuss this problem in the next section.

3. A TWO-STAGE IMPUTATION METHOD: MI-SRI

In the case of missing (at random) covariates as well as responses, we recommend a two-

stage imputation method that combines ideas from multiple imputation (MI) and stochastic

regression imputation (SRI); see Little and Rubin ([6], chapters 4 and 5) for details on each

technique. Our strategy is as follows:

1. In the first stage, MI is applied to missing covariates by creating M data sets with

complete covariates whose outcome values are missing.

2. In the second stage, the M data sets that were created by MI are used to impute the

missing outcome values by using model (9) for the SRI.

The first step of the two-stage procedure uses MI for the missing covariates only; note that

the outcomes are excluded from this step. The advantage of this step is that it can be performed

easily using standard statistical packages, e.g., the SAS procedure MI, or the“missing” library

in S-PLUS, to mention two. In the data analysis we present in the next section, we will assume

a multivariate normal distribution with mean µµµ and variance covariance matrix Σ augmented

with an informative ridge prior; details on using an informative ridge prior can be found online

at http://support.sas.com/rnd/app/da/new/802ce/stat/chap9/sect20.htm and also in

Schafer ([10], p. 152). We use the multivariate normality assumption in an MCMC method

that constructs a Markov chain long enough for the distribution of the elements to stabilize

to a stationary distribution. By repeatedly simulating steps of the chain, simulated draws
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A TRANSITION MODEL FOR LONGITUDINAL ANALYIS WITH MISSING DATA 7

from the distribution of interest can be obtained; see Schafer ([10], Section 5.4) for details.

Categorical and patently non-normal covariates can be multiply imputed under the normality

assumption. For example, imputations can be done to guarantee the range of a variable stays

within the support of that variable. After imputation, imputed values can be rounded off to an

appropriate value. This technique has been shown to be fairly robust in Schafer ([10], Chapter

6). We note that we are being overly general here, and that some time-varying covariates that

are missed may be treated differently if obvious relationships are known. At the end of this

step we will have M “completed” (via MI) sets of covariates.

The second step involves SRI wherein missing responses are imputed by their predicted

values from the model of the “completed” covariates obtained from the previous step, with

the addition of a random term. The random term is obtained from the distribution of the

current, “completed” innovations. This technique is performed for each of the M imputed sets

of covariates to introduce sampling variability. Specifically, we use model (9) as an imputation

model in SRI after imputing missing covariates by MI. For example, suppose yi(tk) is missing.

Then on the m-th imputed value, for m = 1, . . . , M , we set

y
(m)
i (tk) =

pk∑
�=1

φ̂(m)(tk−�) ε̂
(m)
i (tk−�) +

qk∑
�=0

J∑
j=1

β̂
(m)
j (tk−�)x

(m)
ij (tk−�)

+
R∑

r=1

α̂
(m)
r,k z

(m)
ir + ε̂∗

(m)

i (tk), (10)

where x
(m)
ij (tk−�) and z

(m)
ir denote the possibly imputed covariates obtained from the first, or

MI, step. The values ε̂
(m)
i (tk−�) in (10) denote the possibly imputed innovations; these are

obtained from previous SRI steps if necessary. The value ε̂∗
(m)

i (tk) is a random draw from a

normal distribution with mean zero and standard deviation σ̂
(m)
k . We note that in (10), e.g., if

xij(tk−�) is observed, then x
(m)
ij (tk−�) = xij(tk−�) for all m. In general, using SRI alone does

not affect the mean level of the estimates but it tends to underestimate the standard errors

and inflate the correlations. In Section 5, however, we present evidence to support the case

that SRI, when used in conjunction with MI, does not suffer from these problems.
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8 T. KORU-SENGUL, D. S. STOFFER, AND N. L. DAY

After the two-stage imputation process has been completed, parameter estimation is

accomplished using Rubin’s method of combining estimates from the multiply imputed data

sets (see Little and Rubin [6]).

4. AN APPLICATION

To illustrate the viability of the model (9) and the two-stage MI-SRI imputation method,

we analyzed data from an epidemiological study at the University of Pittsburgh that focused

on various factors related to childhood growth, as described in Larkby [5]; for design details,

see Day, Wagener, and Taylor [1]. As in Larkby [5], we focus on the growth of N = 694

children followed from birth to six years of age. In this study, the children were examined at

birth (t0 = 0), at eight months (t1 = 8), 18 months (t2 = 18), 36 months (t3 = 36), and 72

months (t4 = 72) of age. The response, yi(tk), for i = 1, ..., 694 and k = 0, 1, 2, 3, 4, is a growth

index, which is essentially a standardized score for a child’s weight adjusted for that child’s

age, gender, and height, against the national averages.

Among the 694 children in the study, 353 (51%) are black. Because the growth index is

adjusted for age and gender, race [R] is the only time-independent covariate that we consider.

The other covariates we focus on are time-dependent; these covariates are current maternal

cigarette smoking [S] measured in average number cigarettes per day, current maternal alcohol

use [A] measured in average number of drinks per day, the number of illnesses [I] the child

had since the last visit, the number of times the child was hospitalized [H] since the last visit,

whether or not the child was breastfed [BF], and a measure of child’s nutrition [RDA] that

was assessed at the final two time points. Maternal cigarette smoking and alcohol use were

also assessed prenatally, and they will be used in the initial regression for birthweight. The

covariates in the study are also listed in Table I. In particular, note that only maternal smoking

[S] and alcohol use [A] were assessed at all five of the time points. The number of illness [I]

and number of hospitalizations [H] were not assessed at birth. The nutrition variable [RDA]

was assessed at 36 and 72 months, and breastfeeding [BF] was assessed only at 8 months. Race
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A TRANSITION MODEL FOR LONGITUDINAL ANALYIS WITH MISSING DATA 9

[R] was assessed once. Thus, there are a total of 22 covariates for the entire study. Of the 694

children, only 225 have complete records with regard to these variables.

There are a number of statistical issues that need to be addressed. For example, the data

collection involves unequally spaced time points. As previously indicated, there are a varying

number of covariates that are assessed at each time point (e.g., RDA is assessed only at the

final two time points, BF will not be a factor by the third time point, and so on). The main

interest is in how covariates measured early in the study affect the outcome when the children

are older (e.g., the effect of prenatal smoking or alcohol use on growth at 3 years, or 6 years, of

age); model (9) can help here. In this particular study there is a general pattern of missing data

for both the growth outcome and the covariates. An obvious problem is when a mother-child

pair miss an interview, in which case the response as well as all covariates are not assessed.

There were many instances in this study, however, when a mother was interviewed but the

child was not weighed (no response) or the child was weighed, but certain maternal factors

were not assessed.

In our analysis, missing values are handled by the two-stage MI-SRI imputation method

discussed in Section 3. The MI step was performed using the SAS procedure MI with an

informative ridge prior on Σ of p = 0.75 (we found our results to be fairly insensitive to the

choice of the ridge prior). The number of imputed values was M = 10. Note that because

there are 22 covariates for the full study, the multivariate normal distribution used the MI

step has 22 dimensions. For each of the imputed data sets, we performed the SRI step as

detailed in (10), based on the following models. Initially, the model at birth is a regression

of standardized birthweight [Y0] on race [R], prenatal smoking [S0], prenatal alcohol use [A0]

and the interactions with race [S0:R and A0:R]. We will denote this model by:

Y0 ∼ R + S0 + A0 + S0:R + A0:R (11)

From the initial regression we obtain the innovations, ε̂i(0) = yi(0) − ŷi(0), for i = 1, . . . , 694,

where yi(0) is the standardized birthweight of the i-th child, and ŷi(0) is the standardized

birthweight predicted from the regression. For the next time point, t1 = 8 months, the model
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10 T. KORU-SENGUL, D. S. STOFFER, AND N. L. DAY

was (using similar notation with Y8 for standardized weight at 8 months and Inn0 for the

innovations from the initial fit)

Y8 ∼ Inn0 + R + S0 + A0 + S8 + A8 + I8 + H8 + BF8

+ S0:R + A0:R + S8:R + A8:R + I8:R + H8:R + BF8:R (12)

This modeling procedure was continued in this way to the assessment at 72 months. Each

regression included all of the previous innovations and the covariates (and their interactions

with race) from each time point.

The results of the analysis are displayed in Table II; only the final models are displayed.

Prenatal smoking and race are significant at birth. On average, children born to mothers who

smoked were smaller; white children tend to be bigger. There does not appear to be a prenatal

alcohol effect at birth, however, prenatal alcohol use affects growth at other assessments to

36 months of age. This result is remarkable because alcohol use in this study refers only to

moderate alcohol use. For example, of the women who drank prenatally, the mean alcohol

measurement is 0.23 drinks per day, and the maximum is 2.05 drinks per day. Interestingly,

the effect of prenatal smoking is gone by 8 months of age. Finally, by the age of 72 months,

none of the previously significant predictors of growth are significant.

5. SIMULATION STUDY

In this section we compare the two-stage missing data technique, MI-SRI, described in Section 3

with the technique of multiply imputing all (MI-ALL) the missing data, covariates and

outcomes, at the same time.

Instead of creating hypothetical data sets for the simulations, we used the data described in

Section 4, but where we had complete records, across all time points, of standardized weight

(response), maternal smoking [S] and maternal alcohol use [A] (time-varying covariates), and

race [R] (time independent covariate). Of the 694 subjects analyzed in Section 4, only 396 had

complete records with regard to these variables. We considered these data as the “complete”

case and the parameter estimates obtained from the regressions using the “complete” data are
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A TRANSITION MODEL FOR LONGITUDINAL ANALYIS WITH MISSING DATA 11

considered the “true” parameter estimates. Then, using the “complete” data, we created 100

hypothetical data sets each with a 5% general pattern of missing data for maternal smoking

[S] and for maternal alcohol use [A]. Specifically, for the “complete” data set, let Si(t) and

Ai(t) denote the maternal smoking and maternal alcohol use covariates for subject i at month

t, respectively. Using a random number generator, we removed (with probability) 5% of the

covariates in the set {Si(t) : i = 1, . . . , 396; t = 0, 8, 18, 36, 72} and (with probability) 5% of

the covariates in the set {Ai(t) : i = 1, . . . , 396; t = 0, 8, 18, 36, 72} from the “complete” data

set. This process was repeated 100 times. Then, we repeated this removal scheme in the same

manner, with 10% and 20% general patterns of missing observations. In each case, the number

of imputations was set to M = 10.

The top row of Figure 1 compares the average of the coefficient estimates in the models when

data are missing and MI-SRI is used (vertical axis) to the corresponding, actual coefficient

estimates, based on the complete data set (horizontal axis). The bottom row of Figure 1 is

a similar comparison, but using the MI-ALL method instead. Figure 2 is similar to Figure 1,

but shows the estimated standard errors of the estimates based on both techniques. Figures 1

and 2 include all the regression coefficients and their standard errors obtained from five full

models, one for each time point, that include race [R], and all the corresponding smoking

[S] and alcohol [A] variables, and their interactions. Specifically, these models are the models

listed in Table I, but where the covariates related to variables other than race, smoking and

alcohol use are not used. In other words, the models we used in the simulations are those

that would be obtained by going through Table I and retaining only the variables that begin

with the letter R, S, or A. The simulation results for each of the time points are not plotted

individually, but they are collapsed into one graph.

From Figure 1, we see that both techniques, MI-SRI and MI-ALL, provide accurate

parameter estimates in the presence of missing data. From Figure 2, however, we see that while

MI-SRI is accurate in assessing standard errors, the MI-ALL technique tends to overestimate

standard errors. Recall that MI-ALL uses a multivariate normal distribution for both the

response and the covariates in the imputation model, whereas MI-SRI uses a multivariate
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12 T. KORU-SENGUL, D. S. STOFFER, AND N. L. DAY

normal distribution only for the covariates in the imputation model and a regression model for

the response. Since the missing response values are imputed by using a functional relationship

among the covariates and the response via a regression model, the MI-SRI method uses more

information than the MI-ALL method.

Finally, we mention that, in the simulations, we tried various values for the ridge prior in

the MI part of both procedures, MI-SRI and MI-ALL. While the results benefited from the

use of a ridge prior, the results were fairly robust to the choice of the actual value chosen. In

all our simulations, as in the application discussed in the previous section, we used the p = .75

setting in the specification of the ridge prior on Σ in the SAS procedure MI.

6. DISCUSSION

In this paper we introduced a transition model for analyzing data from longitudinal studies.

By regressing on the innovation sequence, we are able to separate the effect of past values

of a covariate with the current outcome. In addition, because complex longitudinal studies

will inevitably be plagued with missing observations, we have devised a two-stage (MI-SRI)

procedure for the estimation of the model parameters. In addition, fitting this model to

complex longitudinal studies is simple because it can be accomplished using least squares

and imputation routines from standard statistical packages such as SAS or S-PLUS with the

addition of some simple programming to complete the SRI step. SAS code for the procedure

may be obtained from the first author. We showed the viability of the model by using the

model and estimation procedure to analyze data from a complex longitudinal study with a

large number of missing observations. Finally, we presented a simulation study to show that

the proposed estimation method can give reasonable and accurate estimates of both regression

parameters and their standard errors.
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Table I. List of the covariates and interactions that were included in the regression models (n = 694).

Assessment Age Covariates† Interactions
Birth R, S0, A0 S0:R, A0:R

8 months R, S0, A0, Inn0, S0:R, A0:R,
S8, A8, I8, H8, BF8 S8:R, A8:R, I8:R, H8:R, BF8:R

18 months R, S0, A0, Inn0, S0:R, A0:R,
S8, A8, I8, H8, BF8, Inn8 S8:R, A8:R, I8:R, H8:R, BF8:R,
S18, A18, I18, H18 S18:R, A18:R, I18:R, H18:R

36 months R, S0, A0, Inn0, S0:R, A0:R,
S8, A8, I8, H8, BF8, Inn8, S8:R, A8:R, I8:R, H8:R, BF8:R,
S18, A18, I18, H18, Inn18, S18:R, A18:R, I18:R, H18:R,
S36, A36, I36, H36, RDA36 S36:R, A36:R, I36:R, H36:R, RDA36:R

72 months R, S0, A0, Inn0, S0:R, A0:R,
S8, A8, I8, H8, BF8, Inn8, S8:R, A8:R, I8:R, H8:R, BF8:R,
S18, A18, I18, H18, Inn18, S18:R, A18:R, I18:R, H18:R,
S36, A36, I36, H36, RDA36, Inn36 S36:R, A36:R, I36:R, H36:R, RDA36:R,
S72, A72, I72, H72, RDA72 S72:R, A72:R, I72:R, H72:R, RDA72:R

† R is race coded as 0 for black and 1 for white. The time varying covariates (for t = 0, 8, 18, 36, 72

months) are S for maternal cigarette smoking (measured as the average number of cigarettes smoked

per day), A for maternal alcohol use (measured as the average number of drinks consumed per day),

I for the number of child illnesses, H for the number of child hospitalizations, BF for whether or

not the child was breastfed (assessed at 8 months only), RDA for a measure of the child’s nutrition

(ascertained only at 36 and 72 months), and Inn is the innovation (residual). The number after the

letter denotes the period (e.g., S8 is the average daily number of cigarettes smoked by the mother

during the child’s first 8 months of age, and S18 would refer to the maternal consumption of cigarettes

from age 8 months to 18 months). The two-way interactions are denoted by a colon (e.g., S0:R is the

prenatal smoking–race interaction).
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Table II. Final models and combined parameter estimates in the time-varying analysis of data from a
longitudinal study focusing on various factors related to childhood growth (n = 694).

Age at
Assessment σ̂k Covariate β̂ se(β̂) p-value

Birth 0.453 prenatal smoking −0.01 0.002 0.0001
race† 0.27 0.036 0.0001

8 months 0.943 prenatal alcohol −0.44 0.19 0.024
innovation(0) 0.20 0.081 0.016

18 months 1.049 prenatal alcohol −0.50 0.20 0.014
race 0.18 0.082 0.029

innovation(8) 0.64 0.043 0.0001
innovation(0) 0.33 0.089 0.0001

36 months 0.765 prenatal alcohol −0.36 0.13 0.006
alcohol(36) 0.22 0.076 0.004
illness(36) 0.06 0.026 0.010

race 0.12 0.068 0.074
alcohol(36)×race −0.23 0.105 0.030

innovation(18) 0.26 0.028 0.0001
innovation(8) 0.38 0.031 0.0001
innovation(0) 0.39 0.066 0.0001

72 months 1.148 innovation(36) 0.83 0.058 0.0001
innovation(18) 0.35 0.044 0.0001
innovation(8) 0.38 0.047 0.0001
innovation(0) 0.25 0.097 0.011
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Figure 1. Top Row: Comparison of the average coefficient estimates in the model on the vertical axis
when data are missing and MI-SRI is used to the corresponding, actual coefficient estimates, based
on the complete data set, on the horizontal axis. Bottom Row: Similar to the top row but for the

MI-ALL technique.
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Figure 2. Top Row: Comparison of the average estimated standard errors of the coefficient estimates
in the model on the vertical axis when data are missing and MI-SRI is used to the corresponding,
actual estimated standard errors of the coefficient estimates, based on the complete data set, on the

horizontal axis. Bottom Row: Similar to the top row but for the MI-ALL technique.

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:1–6
Prepared using simauth.cls


