Walsh—Fourier Analysis and Its Statistical Applications
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The aim of this article is to acquaint statisticians and practitioners, whose research activities require statistical methodology,
with the statistical theory and applications of Walsh—Fourier analysis. It has been suggested that Walsh spectral analysis is suited
to (albeit not restricted to) the analysis of discrete-valued and categorical-valued time series, and of time series that contain sharp
discontinuities. I explain the need for Walsh—Fourier analysis, review the history and properties of Walsh functions, and outline
the existing Walsh—Fourier theory for real-time stationary time series. I discuss various statistical applications based on the
Walsh—Fourier transform and provide an annotated bibliography.
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1. INTRODUCTION

Many of us were introduced to the scientific world of
sinusoids (sine and cosine waves—see Figure 1) through
elementary exhibitions and discussions of light waves. When
we were young, we saw rainbows and were told that sun-
light (white light) was made up of the different colors of
the rainbow. Teachers gave us prisms to look through and
asked us to memorize the array of colors that emerged from
the prism (Roy G. Biv: red, orange, yellow, green, blue,
indigo, violet) and we called the array of colors the spec-
trum. Later, we learned that light was a wave (sinusoid).
We were told that if a beam of light is passed through a
prism, different wavelengths (colors) would be refracted
through different angles. The long wavelengths (red) are
refracted least, and the short wavelengths (violet) are re-
fracted most. We were introduced to the concept of the fre-
quency of oscillation of a wave, measured in cycles per
second (cps). For the visible spectrum, the color red had
the slowest frequency of oscillation (about 4 X 10 cps)
while violet had the fastest frequency of oscillation (about
7.5 x 10" cps). Although we could see the colors, we could
not see the waveforms. Moreover, there were soundwaves
and invisible electromagnetic waves, such as infrared or
x-rays, that we envisioned to be sinusoidal. Perhaps we did
so because some of the waveforms that we did see, such
as the wave motion caused by plucking a guitar string or
the wave motion observed at the surface of a body of water
produced by the wind or some other disturbance, were
sinusoidal.

But not all waveforms are sinusoidal. In the latter part
of the nineteenth century, Alexander Graham Bell tried to
develop telegraphy equipment using sinusoidal functions but
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failed because he coud not produce sinusoidal voltages. In-
stead, his voltages were square waves (block pulses—see
Figure 2) while his receivers resonated with sine waves.
Bell’s contribution, of course, was the discovery of voice
transmission by electricity, but his telegraphy transmitter
decomposed voice into square waves and the receiver re-
composed it from the square waves. Although the trigo-
nometric functions (sine and cosine) were well known (as
was Fourier analysis which I shall discuss briefly in a mo-
ment) almost no practical use could be made of this knowl-
edge with the technology available at the time. Evidently,
the decomposition of voice into square waves predates the
decomposition into sine waves by many decades. See Har-
muth (1977, pp. 3-7) for further discussion and references
on the history of communications.

In 1822, the French mathematician J. L. Fourier offered
a solution to a heat conduction problem by a trigonometric
series representation (Fourier 1822). Since then, Fourier
analysis has played a major role in applications to problems
in science and engineering. Fourier showed that (almost)
any periodic (repeating) function can be represented, to any
desired degree of approximation, by a series consisting of
a sum of sine and cosine functions (sinusoids)—this notion
will be discussed in more detail in Section 3. In the statis-
tical analysis of time series, Fourier methods are used to
discover and analyze the regularity or periodicity in data;
this technique formalizes the concept of dependence or cor-
relation between adjacent time points that one typically en-
counters in the collection of data over time. For example,
Figure 3 shows a plot of the average monthly temperatures
recorded in Dubuque, Iowa, from January 1964 to Decem-
ber 1975 (this data set was taken from Cryer 1986). The
data clearly show sinusoidal behavior with (quite under-
standably) a yearly cycle. Using linear regression tech-
niques, we can approximate the behavior of the data using
sines and cosines; in particular, Cryer (1986, pp. 34-35)
fit the regression model

X(f) = By + B, cos2mt/12) + B, sin27t/12) + €)

to the temperature data X(7), where €(?) is the usual regres-
sion error term and # denotes time in terms of months (z =
1, ..., 144; 12 years of monthly data). In this regression
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Figure 1. Sine and Cosine Waves.
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model, cos(27t/12) and sin(27¢/12) are the independent or
regressor variables; note that cos(27¢/12) and sin(27t/12)
each make a complete cycle every 12 time points (months)
and are said to have a frequency of 1/12 cycles per month
[that is, for example, the graph cos(2mt/12) vs. ¢t (t = 1,
2, ...) repeats itself every 12 time points]. Cryer illustrated
the Minitab commands needed to fit the above regression
model as well as the output from the commands applied to
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Figure 2. Block Pulses.
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Figure 3. Average Monthly Temperature, Dubuque, lowa, January
1964 to December 1975; Observed (Solid Line—Circles) and Predicted
(Dashed Line).

the temperature data. For this data set the fitted model is
X(t) = 46.3 — 22.0 cos(2mt/12) — 15.2 sin(2mt/12),

which is also plotted in Figure 3; the R-square value in this
case is 96.4%. This is a simple example, where the cyclic
or periodic variation in the data is discovered through visual
analysis. In more complex problems, we need a more pre-
cise method of identification, as well as an assessment of
the statistical significance of the cyclic (harmonic) com-
ponents of variation exhibited in the data. This need is best
answered by using the techniques of spectral analysis (also
referred to as frequency domain analysis or Fourier anal-
ysis) for time series.

But we have seen that not all waveforms are sinusoidal.
For example, neurologists are interested in the cyclic be-
havior of electroencephalographic (EEG) sleep patterns; such
patterns have been used in a variety of ways, from the as-
sessment of the cerebral maturation and neurophysiological
organization of the central nervous system in premature
children to the treatment of psychiatric disorders (such as
depression) in adults. There are basically two kinds of sleep:
non-rapid-eye-movement (non-REM) or quiet sleep and
rapid-eye-movement (REM) or active sleep, and there are
various stages within each sleep state. REM sleep alternates
with non-REM sleep in about 90-minute intervals in adults
and at about 45—-60 minute intervals in children. Figure 4
shows the per minute EEG sleep record (for 120 minutes)
of a normal full-term infant (ID 465) approximately 24—36
hours after birth (the corresponding total number of body
movements per minute is also shown—this will be used in
Section 6.3). Here, sleep-state is categorized (per minute)
into one of six possible states using the labels: State 1 quiet
sleep—trace alternant; State 2 quiet sleep—high voltage;
State 3 indeterminate sleep; State 4 active sleep—Ilow volt-
age; State 5 active sleep—mixed; State 6 awake. Clearly,
the EEG sleep-state waveform exhibited in Figure 4 is non-
sinusoidal; in fact, it is a square waveform. We could, us-
ing Fourier (trigonometric) techniques, synthesize the sleep



Stoffer: Walsh—Fourier Analysis

ID # 465

- 1K

e ]
—

1 INUTES OF SLEEP 120

Figure 4. Sleep State (Solid Line—Circles) and Total Number of Body
Movements (Dashed Line—-Squares) of the Unexposed Infant.

pattern in Figure 4 to any desired degree of accuracy by
the sum of sine and cosine functions. It is obvious, how-
ever, that we could never realistically recover the abrupt
switching pattern between the EEG sleep states using the
smooth sinusoidal waveforms. In fact, it makes more sense
to describe square waveforms with abrupt switches, such
as the sleep pattern in Figure 4, in terms of square wave-
forms such as the Walsh functions shown in Figure 5. It is
simply a matter of using the right tool for the job.
Although the analysis of time series data using Fourier
methods is well established in statistics, the statistical anal-
ysis of data (such as the sleep state data) based on the Walsh
functions is virtually nonexistent; the aim of this article is
to partially fill this gap. The remainder of this article is
arranged as follows. I will briefly discuss the history of the
Walsh functions in Section 2. In Section 3, I will present
a brief discussion and comparison of Fourier-based and
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Figure 5. Walsh Functions.
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Walsh—Fourier based analysis. In Section 4 I will offer a
more detailed account of the Walsh functions, their gen-
eration, their behavior, and the role of dyadic time in Walsh
analysis. In Section 5, I will present a summary of the ex-
isting Walsh—Fourier theory for real-time stationary time
series. This will include the definition of the Walsh—Four-
ier transform, the Walsh—Fourier spectrum, and asymptotic
results (such as central limit theorems) for the Walsh—Four-
ier transform; multivariate extensions and coherency will
also be discussed briefly. In Section 6 I will present various
applications of Walsh—Fourier analysis in statistics. First,
Fourier and Walsh—Fourier analyses of the sleep data shown
in Figure 4 are compared. Next, an analysis of variance
where categorical time series are collected as part of the
experimental design (Stoffer 1987; Stoffer, Scher, Rich-
ardson, Day, and Coble 1988) is presented. This is fol-
lowed by a brief discussion of a Walsh—Fourier analysis of
coherency (Stoffer 1990) and some preliminary results on
scaling techniques for categorical time series based on the
Walsh—Fourier transform. Finally, I will summarize the
statistical application of the Walsh—Fourier transform in the
classification of multivariate binary data (Ott and Kronmal
1976). A brief discussion is given in Section 7, and then a
fairly complete set of references and an annotated bibli-
ography is included.

Before proceeding, I would like to stress the following
points. Walsh—Fourier (square wave) analysis is not a sub-
stitute for Fourier (trigonometric) analysis, nor is it a rep-
licate of Fourier analysis. Each technique will have its own
advantages in certain situations. Moreover, it is not always
necessary to choose between the two approaches—both may
be applied in some problems.

2. HISTORY OF WALSH FUNCTIONS

By the start of the twentieth century, scientists were well
aware of the existence of many useful orthogonal systems
of continuous functions, such as the set of orthogonal trig-
onometric functions that occur in Fourier analysis. The field
was developed further as mathematicians constructed or-
thogonal systems with functions that were not continuous.
In 1923, J. L. Walsh published a complete set of orthog-
onal functions that take on only two values, =1 (“on” and
“off”), and are similar in oscillation and many other prop-
erties to the trigonometric functions (Walsh 1923). Al-
though other binary-valued, sets of discontinuous orthog-
onal functions were constructed (Haar 1910; Rademacher
1922), the system due to Walsh is more prominent in terms
of recent studies and applications. Paley (1932) reintro-
duced Walsh functions to the scientific community by de-
fining them as the product of Rademacher functions. Walsh’s
definition, in terms analogous to the behavior of trigono-
metric functions, is more appealing in applications, never-
theless, Paley’s definition was better suited for mathemat-
ical considerations. Fine published about eight articles in
the 1950s (see Bramhall 1974, for a listing) dealing with
some of the mathematical properties of Walsh functions as
defined by Paley; the most important of these are Fine (1949,
1950, 1957). In particular, Fine generalized the Walsh
functions (Fine 1950). Further advances in generalized Walsh
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functions were developed by Chrestenson (1955), and Sel-
fridge (1955) combined these generalizations to develop a
theory of Walsh transforms.

During the 1960s, H. F. Harmuth applied the Walsh
functions to various problems in engineering; those appli-
cations included problems in signal detection, discrimina-
tion and classification, image coding and transmission, log-
ical circuitry, and multiplexing (multiplexing deals with the
simultaneous transmission of a group of independent mes-
sages over a shared channel). In 1969, Harmuth published
an article on the applications of Walsh functions in the field
of communications that appeared in the IEEE Spectrum
(Harmuth 1969a); this article, as well as Harmuth’s text on
the subject (Harmuth 1969b; a second edition was pub-
lished in 1972) inspired a tremendous amount of work in
the area and led to a great surge in the research of the theory
and applications of Walsh functions in engineering and
computer science that lasted well into the next decade. Be-
ginning in 1969, there were annual symposia on Walsh
functions and their applications in Washington, D.C., and
biennial symposia in Britain (in 1971, 1973, 1975). The
Proceedings of the Symposia on the Applications of Walsh
Functions held in Washington, D.C., were published for
the years 1970-1974; however, the 1974 proceedings vol-
ume contained articles and recollections of various partic-
ipants of the 1969 symposia. (The Washington, D.C. pro-
ceedings are published and made available by the National
Technical Information Service, U.S. Department of Com-
merce, Springfield, VA 22151. The British Proceedings of
the Symposia on the Theory and Applications of Walsh
Functions were published by the Hatfield Polytechnic In-
stitute, Hatfield, Hertfordshire, England.) Bramhall (1974)
published a bibliography on Walsh and Walsh-related func-
tions containing roughly 800 entries, most of which were
published in the late 1960s and early 1970s. As an example
of the Walsh fever during this period, N. M. Blachman of
the General Telephone and Electronics Corporation (GTE),
California, explained how he began his eminent research
on the applications of Walsh functions: “In about 1971,
because there seemed to be Important People among our
customers who’d been impressed by rumors they’d heard

. concerning the wonderful things that only Walsh
functions could do, our Chief Engineer asked me whether
we should be making use of Walsh spectral analysis in our
work here on signal analysis . . .” (personal communi-
cation, 1989). But by the late 1970s, interest in Walsh
functions began to wane and there were no more symposia
(it is interesting to note that J. L. Walsh never did anything
more with the Walsh functions after his 1923 article, how-
ever, he did appear at at least one of the symposia in Wash-
ington, D. C., where he was presented a pair of argyle socks
patterned in the form of Walsh functions). H. D. Frankel,
in his address at the 1971 Symposium on the Applications
of Walsh Functions as Chairman of the Panel on the Ap-
plications of Walsh Functions, opened with the following
remarks: “The purpose of the panel is to discuss . . . the
possible uses of Walsh functions . . . what makes such a
discussion timely is that the theory is coming along nicely,
some interesting [equipment has] been built, and so many
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more people and agencies are involved. What makes the
discussion especially attractive to anticipate, is that the field
has matured to the point of having bred counter-revolu-
tionaries; there exist former adherents who now strongly
oppose the use of Walsh functions!” (Frankel 1971, p. 134).
Evidently, many of these researchers realized that, contrary
to their initial beliefs, Walsh functions were not the answer
to all of their engineering problems.

The first mention of Walsh analysis in the statistics lit-
erature was Good (1958), who described a “mod 2 three
dimensional discrete Fourier transform,” which is the dis-
crete Walsh—Fourier transform for a sample of size 2% al-
though he did not give any references to the Walsh litera-
ture of the time. In that article, Good pointed out the fact
that the effects in a 2" factorial experiment could be re-
garded as an n-dimensional mod 2 discrete Fourier (Walsh—
Fourier) transform of the data; he related this to Yates’s
algorithm for calculating the effects in a 2" factorial design
and used these ideas to develop a fast Fourier transform
(also see Good 1971). In 1972, P. A. Morettin began de-
veloping a statistical theory for the analysis of time series
based on Walsh functions (Morettin 1972). As in the en-
gineering literature of the time, however, Morettin primar-
ily based his work on dyadic time—dyadic time uses a strange
clock where, for example, if it is 5 p.m. now, in 3 hours
it will be 6 p.m. (I will discuss the concept of dyadic time
in more detail in Section 4). Morettin (1973, 1974a) was
the first to discuss results for the statistical analysis of real-
time stationary time series; nevertheless, many of Moret-
tin’s articles on this subject concentrated on the develop-
ment of a statistical theory for dyadically stationary time
series (Morettin 1974b, for example). Morettin (1981) pub-
lished an excellent review article of Walsh—Fourier analysis
for dyadic- and real-time stationary processes. I will not
discuss the dyadic-time references in detail, but interested
readers can see Morettin (1981) for references and discus-
sions. A statistical application based on the Walsh functions
appeared in Ott and Kronmal (1976), where the Walsh—
Fourier transform was used in a classification problem for
multivariate binary data (a similar technique was described
in the engineering literature in Ito 1970); this technique will
be discussed at the end of Section 6. Texter and Ord (1989)
used the Walsh functions to develop a procedure to choose
the order of differencing (a technique used to remove trends
in time series data) in automatic forecasting procedures.

Kohn (1980a,b) established theoretical results concern-
ing the statistical application of Walsh functions to real-
time stationary processes. In these articles, Kohn laid the
groundwork for the Walsh—Fourier analysis of real-time
stationary processes by showing that many of the results
concerning the decomposition of real-time stationary time
series using trigonometric functions have their Walsh func-
tions analogs—Kohn’s approach to the problem was based
on results from the engineering literature, in particular,
Robinson (1972a,b). Since Kohn (1980a,b), other articles
in the statistical literature that established Walsh—Fourier
theory for real-time stationary time series were Morettin
(1981, 1983) and Stoffer (1985, 1987, 1990). And recently
(Stoffer et al. 1988), an analysis of variance based on the
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Walsh—Fourier transform was used to assess the effect of
maternal alcohol consumption on neonatal EEG sleep-state
cycling (this was an analysis of categorical time series based
on the Walsh functions that will be described Section 6).

3. FREQUENCY AND SEQUENCY DOMAIN ANALYSIS:
SOME BASIC CONCEPTS

The basis of frequency domain (Fourier) analysis for time
series is the spectral representation theorem for stationary
processes (see Brockwell and Davis 1987, th. 4.8.2, for
example). By (second-order) stationarity (in real time), we
mean a time series, {X(¢), t = 0, =1, =2, ...}, that has a
constant mean level E{X(#)} = u, for all ¢, and for which
the covariance between observations at times ¢ and s,
coviX(®), X(s)} = y(@ — s), is a function only of the time
difference or lag, ¢+ — s for all times ¢ and s (7y is called the
autocovariance function). Roughly, the representation
theorem says that we may think of a (mean-zero) stationary
time series as being formed by the random superposition of
sine and cosine waveforms,

q
X() = 2 [A(j) cos(2mA;t) + B(j) sinwA;0], (3.1)

j=1
where Ay, ..., A, are different frequencies measured in cycles
per unit time and the A(j)’s and B(j)’s are mutually un-
correlated, mean-zero random variables with var{A(j)} =
var{B(j)} = o;. This implies that the total variance in the
time series is var{X(¢)} = 2}210'}, and that the total variance
in the time series can be decomposed (as in an analysis of
variance) into components o-f corresponding to sinusoidal
waveforms at various frequencies of oscillation. Ideally, g
is small and the A’s are well separated in (3.1). Figure 6
shows a particular example of a time series that would be
produced by (3.1) in the case where g = 4, with frequen-
cies Ay = 2, A, = 5, A; = 20, and A, = 50 cycles per unit
of time and with [A(j), B()] = (2, 1), (1, 2), (1, —2), (2,

-2)(=1,2,3,4).

In the temperature-data example presented in Section 1
and shown in Figure 3, it was easy to visually (and intel-
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Figure 6. A Time Series X(t) as the Sum of Four Sinusoids.
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lectually) establish the fact that the data had a yearly cycle,
but in more complicated problems we would not be able to
rely solely on our sight and intellect to discover the har-
monic components of the data. Instead, the idea of corre-
lating the data with sinusoids at various frequencies seems
appealing. For example, the temperature data shown in Fig-
ure 3 is highly correlated with cos(27¢/12) and sin(2wt/
12), that is, the sinusoids that make one cycle every 12
months.

If X(0), X(1), ..., X(N — 1) represents time series data
that we suspect have various periodic components, we may
try to discover these harmonic components by computing
the cosine transform (which is essentially the correlation of
the data with cosines)

N-1
C) = N2 X(1) cos2mA;z)

t=0

3.2)

and the sine transform (which is essentially the correlation
of the data with sines)
N-1

S(A) = N2 X(0) sinQmA;1)

t=0

3.3)

where A; = j/N (that is, j cycles per N time points; 1 < j
= N/2). Typically the (Fourier) periodogram of the data

Ix(\) = C*(\) + S*(\) (3.4)
is computed, and a plot of Ir(A;) versus A; is inspected for
peaks. Again, the idea here is that Ix(A;) will be large when
the time series X(#) contains harmonic components near the
frequency A,—the periodogram Ir(A;) is essentially the
squared correlation of the data with the sine and cosine waves
that oscillate at frequency A;.

A good introduction to the spectral (Fourier) analysis of
time series can be found in the texts by Bloomfield (1976)
and Shumway (1988); Priestley (1981) provided a compre-
hensive treatment of spectral methods at an intermediate
level. Brillinger (1981) and Hannan (1970) are the classic
works written at an advanced level, whereas a mathemat-
ical treatment of spectral analysis at the graduate level can
be found in the texts by Brockwell and Davis (1987) and
Fuller (1976).

The same basic ideas are employed in Walsh—Fourier
analysis. As previously mentioned, the Walsh functions are
similar in some respects to the system of sines and cosines
used in Fourier analysis, however, unlike their sinusoidal
counterparts, the Walsh functions are square waveforms that
take on only two values, +1 and —1 (“on” and “off”). The
sinusoids in Fourier analysis, cos(2wnA) and sin(27nA)
(n =1, 2, ..),are distinguished by their frequency of
oscillation » in terms of the number of complete cycles they
make in the interval 0 = A < 1. For example, for the fre-
quency n = 3, cos(27nA) and sin(27n)) each complete three
cycles in the unit interval. The Walsh functions exhibited
in Figure 7, denoted by W(n, A) (n =0, 1,2, ...,0= A
< 1), are distinguished by the number of times n that they
switch signs in the unit interval. For example, W(3, A)
switches signs three times in the unit interval 0 = A < 1,
from +1 to —1 at A = 1/4, then from —1to +1 at A =
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Il 1

"\

1/2, and finally from +1 to —1 at A = 3/4. In order to
compare the Fourier and Walsh harmonics, Figure 7 shows
a plot of sinusoids superimposed on the Walsh functions.
Of course the domain of the Walsh functions, like the sinu-
soids, is extended to the entire real line (— < A < ®) in
an obvious way.

Since the Walsh functions are aperiodic, the value n in
the notation W(n, A) cannot be called frequency as in the
case of the periodic sinusoids cos(27nA) and sin(27nA).
Harmuth (1969b) introduced the term sequency to describe
generalized frequency to distinguish functions, however,
such as the Walsh functions, that are not necessarily peri-
odic. Harmuth noted that the frequency parameter n in
cos(2mnA) and sin(277nA) may also be interpreted as one
half the number of zero crossings or sign changes per unit
time (the zero crossing at A = O, but not the one at A = 1
is counted for sine functions). For example, in Figure 7,
when n = 3, cos(2mrA) and sin(27nA) each cross zero (or
change signs) six times. In analogy to the relationship of
frequency to the number of zero crossings or sign changes
in periodic functions, Harmuth-sequency is defined to be
one half the average number of zero crossings or sign changes
that a function makes per unit time—this concept can be
applied to aperiodic as well as periodic functions and the
definition of Harmuth-sequency coincides with that of fre-
quency when applied to sinusoidal functions. I find Har-
muth’s definition of sequency to be forced in an attempt to
get Walsh-based analysis to behave like Fourier-based anal-
ysis [Harmuth also defined “cosine Walsh” and “sine Walsh”
or cal and sal functions to further the analogy of Walsh to
Fourier analysis. This idea permeates the engineering lit-
erature on Walsh functions and interested readers can refer
to Harmuth (1969b), Ahmed and Rao (1975), or Beau-
champ (1975, 1984)]. But this brings me back to a point I
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made earlier: Walsh—Fourier and Fourier analysis are not
replicates of each other—each has its own advantages and
disadvantages, and there is no need to replace one with the
other. Henceforth, I will adopt the term sequency in ref-
erence to the Walsh functions, however, the term will sim-
ply denote the number of zero crossings or sign switches
that a Walsh function makes in the unit interval. For ex-
ample, W(3, A) is the third sequency-ordered Walsh func-
tion since W(3, A) makes three sign switches or zero cross-
ings in the unit interval.

In the sequency domain (Walsh—Fourier) analysis of time
series, we will be interested in the discrete version of the
Walsh functions since time series typically are sampled at
discrete, equidistant time points. The first eight discrete,
sequency-ordered Walsh functions, W(n, m/N) (m, n = 0,
1, ..., 7), corresponding to a sample of length N = 2’ are
shown below as the rows (columns) of a symmetric matrix
called the Walsh-ordered Hadamard matrix, Hy,(3):

11 1 1 1 1 1 17
1 1 1 1 -1 -1 -1 -1
1 1 -1 -1 -1 -1 1 1
1 1 -1 -1 1 1 -1 -1
Hy®) =y 1 1 1 -1 -1 1
1 -1 -1 1 -1 1 1 -1
1 -1 1 -1 -1 1 -1 1
1 -1 1 -1 1 -1 1 -1

For example, the fourth row or column of Hy(3) corre-
sponds to the discrete Walsh function W(3, m/8) (m = 0,
1, ..., 7), which makes three sign changes (this is its se-
quency value) as m varies from O to 7. The discrete Walsh
functions are simply the continuous Walsh functions eval-
uated at equidistant points along the unit interval. For ex-
ample, W(3, m/8) is the third Walsh function W(3, A) pic-
tured in Figure 7, evaluated at A = 0/8, 1/8, ..., 7/8.
By analogy to Fourier analysis, the Walsh periodogram
of the data, X(0), ..., X(N — 1), is
N-1 2
Iy(\) = [N“/Z > X(owa, /\,.)] ,

t=0

(3.5)

where A; is a sequency of the form A; = j/N (j switches
per N time points, 1 =j = N — 1). The Walsh periodogram
is essentially the squared correlation of the data with the
Walsh functions at various rates of switching. One can plot
Iw(A;)) versus A; to inspect for peaks, as in the periodic case.
The term being squared in (3.5) is the Walsh—Fourier
transform of the data, in analogy to the cosine and sine
transforms in (3.2) and (3.3).

Unfortunately, we cannot obtain the analog of the trig-
onometric representation of X(#) given in (3.1). That is, if
we propose that a time series is the superposition of Walsh
functions at various sequencies,

q
X® = D, AGIW(, A, (3.6)

j=1
where Ay, ..., A, are g distinct sequencies and the A(j)’s
are mutually uncorrelated mean-zero random variables with
var{A(j)} = o7, then the time series X(¢) is not stationary,
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but is dyadically stationary (see Section 4 for a definition
of dyadic stationarity). Although this problem makes the
Walsh—Fourier decomposition more difficult to interpret than
the Fourier (trigonometric) decomposition, it does not to-
tally negate the practical utility of the Walsh—Fourier de-
composition.

As previously mentioned, there are many physical situ-
ations in which time series cannot be thought of as the su-
perposition of well-separated sinusoids. For example, if the
process of interest is discrete or categorical-valued with values
in some finite set (e.g., square waveforms), then it makes
little sense to correlate the data with smooth sines and co-
sines. As an alternative, it has been suggested that the spec-
tral analysis of time series that contain sharp discontinuities
be conducted in the sequency domain via the Walsh—Four-
ier transform. This seems to be a natural alternative to the
usual Fourier analysis since the Walsh—Fourier transform
is based on square-wave Walsh functions. This approach
enables investigators of square-wave phenomena to analyze
their data in terms of square waves and sequency (switches
per unit time) rather than sine waves and frequency (cycles
per unit time). Beauchamp (1975, chap. V, sec. F; 1984,
sec. 3.3.4) empirically demonstrated that the respective roles
of Walsh and Fourier spectral analysis for discontinuous
and smooth varying time series, respectively, are clear. He
concluded that where a signal (time series) is derived from
a sinusoidally based waveform, Fourier analysis is relevant,
and where the signal contains sharp discontinuities and a
limited number of levels, Walsh analysis is appropriate.
Beauchamp (1975, 1984) provided an excellent introduc-
tion to Walsh analysis with many examples and numerous
comparisons between Walsh-based and Fourier-based spec-
tral analysis. As a point of interest, Beauchamp (1984, sec.
3.5.2) presents two examples of synthesizing waveforms,
that is, reconstructing an entire time series from a few sinu-
soids or Walsh functions in the sense of (3.1) and (3.6). In
the first example he shows that in reconstructing a simu-
lated continuous (smooth) seismic waveform [say X(#)], ap-
proximately twice as many Walsh terms are required to give
about the same accuracy as may be obtained in the Fourier
case [the number of terms corresponds to g in equations
(3.1) and (3.6)]. The second example shows the reconstruc-
tion of a rectangular waveform in which there is efficient
reconstruction with considerably fewer Walsh terms than
Fourier terms. Although the results of these examples may
be obvious, they reinforce the idea that analysis of smooth,
continuous types of waveforms favors Fourier analysis,
whereas a rectangular or discontinuous waveform favors
Walsh analysis.

In addition to Beauchamp (1975, 1984), readers inter-
ested in the engineering perspective of Walsh—Fourier
spectral analysis could refer to Ahmed and Rao (1975),
Harmuth (1969b, 1977), Maqusi (1981), Tzafestas (1985),
or the Proceedings of the Symposia on the Applications of
Walsh Functions, to mention a few. Be forewarned that in
examining the literature concerning this subject one must
keep in mind that there are two modes of development (one
based on the real clock and one based on the dyadic clock),
even though the particular mode is not always apparent.
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This can be quite confusing since the results are consid-
erably different, and results from one mode do not typically
apply to the other.

4. WALSH FUNCTIONS AND THEIR GENERATION

There are a number of formal definitions of Walsh func-
tions (e.g. Ahmed and Rao 1975; Beauchamp 1975, 1984;
Kohn 1980a; Morettin 1981; or Ott and Kronmal 1976), but
none give much insight. The Walsh functions form a com-
plete orthonormal sequence on [0, 1)—roughly, this means
that almost any waveform can be uniquely synthesized to
any desired degree of accuracy by a linear combination of
Walsh functions—and take only two values +1 and —1.
Although the various definitions of the Walsh functions lead
to different orderings, I will be interested primarily in the
Walsh or sequency ordering since this ordering is compa-
rable to the frequency ordering of sines and cosines. The
sequency-ordered Walsh functions will be denoted by W(n,
A), where n = 0, 1, 2, ...; 0 = A < 1. The first eight
continuous sequency-ordered Walsh functions, W(n, A)
(n=20,1, ..., 7), were displayed in Figure 7. On further
inspection of Figure 7, one notes that W(0, A) always takes
the value +1, and makes no sign changes or zero crossings;
the first Walsh function W(1, A), makes one sign switch
from +1 to —1 as A varies over its range (0 = A < 1), the
second Walsh function W(2, A) makes two sign switches,
from +1 to —1, and then from —1 to +1, and so on until
the seventh Walsh function W(7, A), which oscillates the
fastest making seven sign switches. The corresponding eight
discrete sequency-ordered Walsh functions, W(n, m/N) (n,

=0, 1, ..., 7), corresponding to a sample of length N
= 2% were shown in Section 3 as the rows (or columns) of
the symmetric Walsh-ordered Hadamard matrix Hy(3). In
the statistical analysis of time series using Walsh functions,
we shall be interested primarily in the discrete Walsh
functions.

The Hadamard matrix can be generated recursively as
follows: Begin with H(0) = +1, and then let

_|H® Hk _
Hk + 1) [H(k) “H®) | k=0,1,2,...,
so, for example,
) 1 1 1 1
{11 11 -1 1 -1
H(D) = ] _1], HO =, | -1 1/
B 1 -1 -1 1
and
11 1 1 1 1 1 1]
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
/1 -1 -1 1 1 -1 -1 1
H@) = 1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1]

The Hadamard matrix contains the Walsh functions as rows
(or columns, noting the symmetry) in what is called natural
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or Hadamard ordering. For example, if we write the se-
quency-ordered or Walsh-ordered Hadamard matrix Hy(3)
in terms of its column vectors, Hy(3) = [hy, hy, h,, h;, h,,
hs, hg, h;], where h; is the ith sequency-ordered Walsh
function, then the natural-ordered Hadamard matrix is H(3)
= [hy, hy, hs, hy, h;, hg, h,, hs]. In general, for N = 2°
where p is a positive integer, the sequency-ordered Walsh
functions can be obtained from the N X N Hadamard matrix
H(p) by a bit-reversal Gray code (Ahmed and Rao 1975,
pp- 92-95), which essentially counts the number of sign
changes in each row or column of the H(p) and then reor-
ders the rows or columns to obtain Hy(p). As shown in
Good (1958) and others, it is possible to simplify the task
of computing H(p), and in turn Hy(p), through a matrix
factorization technique which reveals a large amount of re-
dundancy in the repeated calculations implied by the afore-
mentioned recursive generation technique. This is the es-
sence of the fast Walsh—Fourier transform that will be
discussed briefly in the next section.

The concept of dyadic addition must be introduced to
describe some of the properties of the Walsh functions. If
m and n are nonnegative integers, their binary expansions
are

q q
m = Z m;2’ and n= 2 n;2’,
j=0 =0

where m; and n; are either O or 1. The dyadic sum, m ® n
(also called bitwise-exclusive-or addition and bit-by-bit mod
2 addition), of m and n is

q
m®n=> |m;— nj2;
=0

notethat 1 @1 =0=000,and 1 G0 =1=06 1.

For example, using binary expansion, 5 = 101, 3 = 011,

so that 5 @ 3 = 101 @ 011 = 110 = 6; this is why in

dyadic time, 3 hours from 5 p.m. is 6 p.m.
Discrete Walsh functions W(n, m/N) (n, m
.., N — 1), have the following properties:

=0,1,2,

W(n,, m/NYW(n,, m/N) = W(n, ® n,, m/N), (4.1)
W(n, m/N)W(n, my/N) = Win, (m; ® my)/N], (4.2)
N-1 m N-1 .
N7 D Wln,—]=N" ,—]=0
Zz (n N) ,,,Z=OW<" N)
form,n#0=1 formorn=0 (4.3)

forN=2and0=n, m=<=N — 1.

Relationships (4.1) and (4.2) are the Walsh analogies of
the multiplicative/additive relationship of the trigonometric
functions, for example, 2 cos(at) cos(Bf) = cos(a — B)t +
cos(a + PB)t. These results reveal the connection between
the Walsh functions and dyadic-time stationarity, and the
trigonometric functions and real-time stationarity. That is,
if (3.1) is true, then by using the multiplicative/additive
relationships of sines and cosines, one can show that a time
series generated by (3.1) has the properties E{X()} = 0 and
cov{X(t + h), X()} = =L,07 cos(2mA;h), independent of
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the time ¢, and hence the time series is real-time stationary
(for example, see Shumway 1988, sec. 2.2). If (3.6) is true,
then by using results (4.1) and (4.2) one can show that a
time series generated by (3.6) has the properties E{X(¢)} =
0 and coviX(¢ @ h), X(} = Z{,07W(h, A). In this case
the time series is not real-time stationary since the covari-
ance function is not a function of the lag (+ ® k) — ¢; how-
ever, the time series X(¢?) is dyadically stationary since the
covariance function depends only on A, the dyadic differ-
ence between ¢ @ h and ¢, (see Morettin 1981 for details).
This natural relationship between the Walsh functions and
dyadic addition is the reason that most of the Walsh liter-
ature focused on the assumption of dyadic stationarity.
Clearly, dyadic time has theoretical appeal in the Walsh
domain; nevertheless, due to its strange behavior, dyadic
time is of little practical use. Henceforth, the term station-
ary will refer only to real-time stationarity.

5. THE WALSH—FOURIER TRANSFORM AND SPECTRUM

The Walsh—Fourier transform of X(0), X(1), ..., X(N —
1), is
N-1
dy(A) = N7V 3 X(OW(t, M),

t=0

0o=A<1, (5.1

in analogy to the cosine and sine transforms given in (3.2)
and (3.3). This transform is essentially the correlation of
the data with the Walsh functions. Assuming X(¢) is sta-
tionary, with autocovariance function y(h) = cov{X(¢t + h),
X(9}, the variance of dy(A) is

N-1

var{dy(D)} = D, T(HW(, V),

j=0

5.2)

where 7(j) is the logical covariance function (Robinson
1972a,b; Kohn 1980a) of X(#) given by
29—-1

() =271, v(j Dk — k),

k=0

29 <j< 20t

If the autocovariance function of X(¢) is absolutely sum-
mable [that is, 2 - _.|y(h)| < ©, which roughly means that
observations taken far apart in time are nearly uncorre-
lated], then var[dy(A)] — f(A) as N — © where

oo

) =D 1(GHWG, L),

Jj=0

0=A<1, (5.3)

is the Walsh—Fourier spectrum (or spectral density) of X(z).

If the length of the sample is a power of two, say N =
27, then the transform (5.1) may be calculated for Ay = m/
N@m=20,1,2,..., N— 1) using a fast Walsh—Fourier
transform. The fast transform is computed from the matrix
product Hy,(p)X, where X is the N X 1 vector of obser-
vations, X = (X(0), X(1), ..., X(N — 1))’. This calculation
can be done quickly, with only a relatively small number
of additions and subtractions of the data, using the matrix
redundancy techniques discussed briefly in Section 3 (Ahmed
and Rao 1975, chap. 6). If the sample length N is not a
power of 2, dummy observations equal to the sample mean
may be appended to the series in order to make the new
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sample length a power of 2. Similarly, observations may
be deleted to obtain a new sample length that is a power
of 2. Provided that not too many observations are appended
or deleted, the transform will not be noticeably different
than that of the original data, although the sequencies will
be slightly different. That is, the new sequencies will be A’
= m/N' where N' = 2 is the new sample length, whereas
the sequencies associated with the original series are of the
form A = m/N. These considerations are similar for the
fast Fourier transform (Bloomfield 1976, pp. 72-74;
Shumway 1988, pp. 66—67). It is also possible to calculate
the Walsh—Fourier transform directly from the definition of
the Walsh functions—in this. case, the computation of the
transform could be slow.

If N = 2° and the mean, u, of the series is unknown,
the zero (m = 0) sequency is the only sequency of the form
Ay = m/N for which the transform of the mean-centered
series {X(¢) — u} cannot be evaluated since, by (4.3),

N-1
N2 uW(t, m/N) = Ny

=0

m=20

=0 m#0.

Thus, a mean-centereq_ transforg [that is, the transform of
X(f) — wm, or of X(¢) — X, where X denotes the sample mean]
will be the uncentered transform except at the 0 sequency.
Various results relating the convergence of dy(A) to f(A)

exist. For example, Kohn (1980a) showed that if Ay is
dyadically rational (that is, its binary representation is fi-
nite) and Ay D A — 0 as N — » then E{d¥(Ay)} = f(A) as
N — . Although the asymptotic (N — ) covariance of
the Walsh—Fourier transform at two distinct sequencies is
not zero in general (this is in contrast to the trigonometric
case, wherein the Fourier transforms of the data at two dis-
tinct frequencies are, under mild conditions, asymptotically
independent), Kohn (1980a) shows that if A, y and A, y are
dyadically rational, A,y — A5 = N and A;y DA — 0
(j=1,2) as N— o, then E{dy(A, )dy(Ay8)} — 0 as N —
o, These results are useful in obtaining consistent esti-
mators of f(A). Kohn (1980a,b), Morettin (1973, 1974a,
1983), and Stoffer (1985, 1987, 1990) established central
limit theorems (under the assumption of stationarity) for the
Walsh—Fourier transform under a wide range of conditions.
The basic result is that, under appropriate conditions (that
typically include some type of mixing condition—loosely,
events that occur far apart in time are nearly independent),
dy(Ay) 3 N(O, f(A)) as N — ; that is, the large sample
distribution of the transform dy(Ay) is Gaussian with mean
zero and variance f(A) given in (5.3). Under these same
conditions and using the aforementioned results, if {A, v,
..., Ay} is a collection of M sequencies that are all chosen
close to a sequency of interest, A, such that |A; y — Ay =
N 'forj#k,and \,y @A —>0forj=1,..., M, then
as N — o,

M

>, dim) = FOX (5.4)

j=1

where x5, denotes a chi-squared distribution with M degrees
of freedom. From this we deduce that M 'S ,dy (A, ) is
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an estimate of f(A) having variance 2f*(A\)/M. If we let M
— o as N — o with M/N — 0, then the estimate is a mean
square consistent estimate of f(A) (0 < A < 1). Note that
d)%;()\j’N) is the Walsh periodogram of the data at sequency
A, as discussed in (3.5); hence, a consistent estimate of
the Walsh—Fourier spectrum, f()A), is simply the average of
the Walsh periodogram at sequencies near the sequency
of interest.

A useful measure of the degree of association (at se-
quency A) between two time series X,(f) and Xjp(?) is co-
herency,

Kap) = fasW)/LfaaOfs(D]'2,

where f,4(A) and fzp(A) are the Walsh—Fourier spectra of
series A and B, respectively, and f,5(A) is the cross-spec-
trum of the two series. The cross-spectrum is related to the
covariance of the Walsh—Fourier transforms of series A and
B; it is a sequency-dependent measure of covariance be-
tween the series in much the same {Nay that the Walsh—
Fourier spectrum is a sequency-dependent measure of vari-
ance. Thus, coherency is a sequency-dependent measure of
correlation and analogous to the usual correlation inequal-
ity, —1 = K,3(A) = 1. In the trigonometric (Fourier) case,
cross-spectra are complex-valued and hence squared-co-
herency rather than coherency is measured; this is one ad-
vantage of working in the real-valued Walsh—Fourier do-
main, as we shall see in the application presented in Section
6.3. For an introduction to cross-spectral analysis in the
trigonometric case, see Bloomfield (1976, chap. 9) or
Shumway (1988, chap. 2). For a detailed account of cross-
spectral Walsh—Fourier analysis and its applications, see
Stoffer (1990).

6. STATISTICAL APPLICATIONS

6.1 A Comparison of Fourier and Walsh—Fourier
Data Analysis

To examine some of the differences between Fourier and
Walsh—Fourier analysis, the EEG sleep state data shown in
Figure 4 is analyzed using the fast Fourier transform (FFT)
and the fast Walsh—Fourier transform (FWT); see Ahmed
and Rao 1975, chapters 4 and 6, for example. In order to
make the two techniques comparable, Harmuth’s definition
of sequency is used. The discrete Walsh function W(n, A)
makes n zero crossings (or sign switches) per unit time, and
thus its corresponding sequency value is n; the Harmuth-
sequency of that function is n/2 if n is even, and (n + 1)/
2 if n is odd (recall that Harmuth-sequency and frequency
coincide for sinusoids). To differentiate between the two
definitions of sequency, I will denote Harmuth-sequency by
H-sequency. Using this definition one will note that two
Walsh functions have the same H-sequency, that is, W(2n,
A and W2rn — 1, A) (n = 1, 2, ...) each have an H-sequency
of n; this is also true for the sinusoids, that is, cos(27nA)
and sin(27n)A) each have a frequency of n. Thus, in this
approach, the Walsh—Fourier periodogram given in (3.5) is
modified to look like the Fourier periodogram (3.4) by set-
ting In(A) =Iy(2j — D) + Ly2p [j= 1,2, ..., N — 2)/
2)], where A; represents H-sequency.
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The duration of the sleep study exhibited in Figure 4 was
116 minutes, and hence to utilize the FFT and the FWT,
the data were padded to N = 128 = 2’. The Fourier period-
ogram and the Walsh periodogram are compared in Figure
8, but since X;I4(A) = 2 Z;Ix(A), excluding A; = 0 and
1/2, Iy(A)/2 and I-(A) are superimposed to facilitate the
comparison. Moreover, the values of the periodograms are
an order of magnitude larger in the slower H-sequency/
frequency range than in the moderate and fast ranges, and
hence, in order to get the best visual comparison, Figure 8
shows 10 log,o{/x(A)/2 + 1} and 10 log,{I=(A) + 1}, with
A =j/N,forj=1,...,7, and In(A)/2 and I(A) for j =
8, ..., 63.

The two periodograms are very similar, and both suggest
a strong peak in the neighborhood of A = 3/128. In the
frequency domain, A is measured in cycles per minute; this
would mean that the dominant harmonic component in the
data is about one cycle every 45 minutes (128/3 = 43 min-
utes per cycle). In the H-sequency domain, Harmuth (1977,
p. 9) would interpret this as 45 minutes being the dominant
“average period of oscillation” [that is, the average sepa-
ration in time of the zero (mean value) crossings multiplied
by two]. In both cases, we are led to the same conclusion
that this normal neonate alternates between non-REM and
REM sleep in approximately 45 minute intervals. This
component of normal infant sleep is well documented (Hauri
1982).

The most striking difference between the two period-
ograms is the peak in the Walsh periodogram at A = 14/
128 that is not present in the Fourier periodogram; this H-
sequency corresponds to an average period of about 9 min-
utes (128/14). To explain this, note that the average length
of time that the infant stays in any one state is approxi-
mately 4.52 minutes (for example, in Figure 4, the infant
is in State 5 for nine minutes, State 3 for one minute, State
5 for one minute, etc.). Hence, the average separation in
time of the state changes multiplied by two (which is Har-
muth’s definition of generalized period) is nine minutes.
This behavior was consistent enough throughout the record

o
~

POWER

1

Figure 8. Comparison of the Walsh Periodogram (Solid Line—Cir-
cles) and the Fourier Periodogram (Dashed Line—Squares) for the Sleep-
State Data Shown in Figure 4.
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of this infant to be sufficiently correlated with the Walsh
functions corresponding to an average period of nine min-
utes. This component, of course, was missed in the fre-
quency domain.

It is interesting to note that in an analysis of the effects
of maternal alcohol consumption on the EEG sleep-state
cycling of neonates (Stoffer et al. 1988), the nine minute
generalized period was present in the unexposed infants but
was absent in the exposed infants. This will be explained
in more detail in the next section.

In the sections that follow, I will use sequency rather
than H-sequency. Sequency will be measured in switches
per unit time, and generalized period will be measured in
terms of the average length of time between switches. It is
easy to convert back and forth between the two measures
since H-sequency is approximately one half of sequency.
For example, in Figure 8 the strong peak at H-sequency
3/128 would occur at a sequency of either 5/128 or
6/128 switches per minute, and the peak at H-sequency
14/128 would occur at a sequency of either 27/128 or 28/
128 switches per minute. The actual peak sequency values
were 5/128 and 27/128, and hence, in the sequency do-
main, we would conclude that the average length of time
per sleep-state change is approximately 25.6 (128/5) min-
utes with a secondary component of 4.74 (128/27) minutes.

6.2 A Walsh—Fourier Analysis of Variance

Data were collected for a study of the effects of moderate
maternal alcohol consumption on neonatal EEG sleep pat-
terns. A detailed description of the study design, the meth-
ods used for measuring alcohol use, and the scoring of neo-
natal EEG sleep records can be found in Day, Wagener,
and Taylor (1985) and Scher, Richardson, Coble, Day, and
Stoffer (1988). Briefly, an EEG sleep recording of approx-
imately two hours duration is obtained on a full-term infant
24 to 36 hours after birth, and recordings are scored—by
an electroencephalographer who is not aware of the pre-
natal substance exposure of the infant—for EEG sleep-state,
REM’s, arousals, and body movements using scoring ep-
ochs of 1 minute. Sleep-state is cdtegorized (per minute)
into one of six possible states: State 1 quiet sleep—trace
alternant; State 2 quiet sleep—high voltage; State 3 inde-
terminate sleep; State 4 active sleep—low voltage; State 5
active sleep—mixed; State 6 awake, as described in the
introduction.

Two groups of infants were compared. The first group
contained 12 intants whose mothers abstained from using
alcohol throughout pregnancy, while the second group con-
tained 12 infants whose mothers used alcohol throughout
pregnancy on a regular basis at a rate of at least .5 drinks
per day. The actual sleep-state records (that is, per minute
EEG sleep-state for 120 minutes for each infant in the study)
can be found in Stoffer et al. (1988). The sleep-state record
of a typical infant from the abstainer group (ID 465) is ex-
hibited in Figure 4, and a similar plot for a typical infant
in the exposed group (ID 223) is displayed in Figure 9.
Recall that the corresponding total numbers of body move-
ments per minute (discounting sucking) for each infant are
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Figure 9. Sleep-State (Solid Line—Circles) and Total Number of Body
Movements (Dashed Line—-Squares) of the Exposed Infant.

also shown; they will be used in the next section in an anal-
ysis of coherency.

The problem of detecting whether a common sleep pat-
tern existed among the 12 infants in each group was ad-
dressed using a nonparametric signal-plus-noise model for
the sleep-state data in each group. Let X (f) designate the
sleep state of infant g attime ¢z (¢ = 1, ..., 12;¢=0, ...,
127); the sleep studies were approximately 120 minutes
long—to use the FWT given in Ahmed and Rao (1975),
the data were padded to N = 128 = 27 minutes as described
in Sections 4 and 6.1. Each sleep-state record in the group
is decomposed into the sum of three components—an in-
dividual mean value 6,, a common stochastic and stationary
sleep pattern S(¢), and stationary error €,(%),

X0 = 6, + @) + €0 (6.1)

S(¢) has mean zero and Walsh—Fourier spectrum f;(A), and
€0, uncorrelated with S(z), has mean zero and Walsh—
Fourier spectrum f,(A). Testing whether there was a com-
mon sleep pattern among individuals in the group meant
testing the null hypothesis Hy: fs(A) = 0 (0 < A < 1). To
perform the test, the Walsh—Fourier transform was com-
puted for each infant g in the group. Stoffer (1987) showed
that, under appropriate conditions, the Walsh—Fourier
transform of X,(¢), dy,(m/N), can be represented approx-
imately as the sum of two independent random compo-
nents, say,

dy (m/N) = U(m) + Z,(m), (6.2)

where U(m) is normally distributed with mean zero and
variance fg(m/N), and the Z,(m) are independent and nor-
mally distributed with mean zero and variance f.(m/N);
moreover, U(m) and Z,(m) are independent. Thus the prob-
lem of testing Hy: fg(A) = O is reduced to a random effects
analysis of variance (ANOVA) problem where the data are
the Walsh—Fourier transforms of the sleep-state time series.

Let dy,.(m/N) = [2, dy(m/N)]/12 be the average
transform of the group. Then following Scheffé (1959, pp.
225-227), the hypothesis mean-square and the error mean-
square at any particular sequency A = m/N were computed

471

as MSH(m) = 12 d,.(m/N) and MSE(m) = 3.2 ,[dy (m/
N) — dy,.(m/N)J*/11, respectively. The test of H, was per-
formed at sequencies of the form A = m/N by comparing
the ratios

F(m) = MSH(m)/MSE(m) 6.3)

with the F distribution with 1 and 11 df. See Stoffer (1987)
for further details. Also, refer to the Brillinger (1980) for
analysis of variance problems under continuous-valued time
series models.

Figure 10 shows a plot of the square root of F(m) for
each group at all sequencies except the zero sequency (m
= 0) and indicates the null significance levels of .01 and
.001 (for ease of comparison, the square root of the F ratios
are shown in Figure 10). Although it is difficult to get pre-
cise information from Figure 10, a table was provided in
Stoffer et al. (1988, tab. 1) to facilitate the examination of
the spectral components. As an example, for the abstainer
group, the largest peak is F(29) = 62.1. In terms of gen-
eralized periodicity, this means that the component corre-
sponding to 4.4 (128/29) minutes per state change, on the
average, was a strong common component of sleep for the
unexposed group. This is consistent with the individual
analysis presented in Section 6.1. As previously men-
tioned, this component is absent from the exposed group
of infants. From Figure 10 we concluded that a common
sleep pattern does exist in the abstainer group, however,
since there were only a few significant sequencies associ-
ated with the exposed group, we were hesitant to conclude
that a common sleep pattern existed in the exposed group.

To extend the preceding analysis to comparisons between
the two groups of infants (see Stoffer et al. 1988 for de-
tails), add a subscript for group membership and test the
null hypothesis Hy: f5,(A) = f5,(A) (0 < A < 1). Let

dy,..(m/N) = [dy,..(m/N) + dy .,(m/N)1/2

be the grand average transform and define the hypothesis
mean-square and the error mean-square as

8
I
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Figure 10. F Ratio (6.3) for Testing for a Common Signal in the
Unexposed Group of Infants (Solid Line—Circles) and in the Exposed
Group of Infants (Dashed Line—Squares).
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2
MSH(m) = 12 z [dy..{m/N) = dy ..(m/N)?
k=1
and 2 12
MSE(m) = >, > [dyg(m/N) — dy,.(m/N)*/2(12 — 1),

k=1 g=1

respectively. The statistic F(m) was computed as in (6.3)
and the hypothesis was tested by comparing F(m) with the
F distribution with 1 and 22 df. Figure 11 shows a plot of
F(m), in this case at all sequencies except the zero se-
quency, and indicates the null significance thresholds of .05
and .01. Again, refer to Stoffer et al. (1988, tab. 1 and fig.
5) for detailed information about Figure 11. Figure 11 also
includes another plot for comparison—this other plot will
be explained in Section 6.4.

Figure 11 shows significant differences between the
groups. For example, for the sequency of 29/128, which
corresponds to the generalized period of 4.4 (128/29) min-
utes per sleep state switch, F(29) = 7.05, exceeding the
.02 significance threshold. Hence we conclude that (among
other components) the generalized period of approximately
4.4 minutes per sleep state change is a component in the
sleep architecture of normal neonates, and furthermore, this
component is absent in neonates that are exposed to alco-
hol. From this analysis, the neurologist suggested that dif-
ferences between the ultradian sleep cycles in the two groups
may reflect differences in the central nervous system mat-
uration. In particular, these differences indicated an alter-
ation in the development and expression of diverse neu-
rotransmitter sections within the brain stem and forebrain
connections that are associated with the expression of active
and quiet sleep.

The tests based on F(m) are only appropriate at one pre-
determined sequency. Since these tests were used for an
exploratory analysis, special consideration was given to the
overall error rate. It has been suggested (Shumway 1988,
p. 70) that the way to overcome the problem of the overall
error rate involved in making simultaneous statements about

-~
-~
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Figure 11. F Ratio for the Between-Group Comparison of the Unex-
posed and Exposed Groups of Infants Using the Techniques of Sec-
tion 6.2 (Dashed Line—Squares) and the Scaling Techniques of Sec-
tion 6.4 (Solid Line—Circles).
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the value of the spectrum is to use a Bonferroni correction.
In the context of the EEG sleep-state analysis, a bound on
the overall error rate of the tests is the sum of the individual
a levels at each sequency value. Thus in the investigation
of a common group sleep pattern, we used the levels of
.001 and .01 to indicate the strong and moderate spectral
components. Subsequently, in the between-group analysis
we were able to focus on a few particular sequencies of
interest [although all the values of F(m) are evaluated for
computational and graphical convenience]; in this case we
used the level of .01 to indicate group differences, how-
ever, we felt that since this was an exploratory analysis, it
was appropriate to indicate crossings of the .05-level
threshold.

6.3 A Walsh—Fourier Analysis of Coherency

The analysis presented here is from a continuation of the
study of the effects of moderate alcohol exposure on neo-
natal cerebral and central nervous system maturation as as-
sessed through EEG sleep studies and involved the 24 in-
fants discussed in the previous section. Details can be found
in Stoffer (1990). In particular, the coherency between the
per minute EEG sleep-state time series and the correspond-
ing per minute total number of body movements time series
was used in detecting disturbances in neonatal sleep cycling
as a result of alcohol exposure. Recall that coherency is a
sequency dependent measure of correlation between the two
time series. Figures 4 and 9 present typical data plots from
the unexposed group and from the exposed group of in-
fants, respectively. I will concentrate on the analysis of these
infants before presenting the group analysis.

Let d,(A) and dg(A) denote the Walsh—Fourier transforms
of the per minute EEG sleep state and the corresponding
total number of body movements of an infant, respectively.
The sample coherency between sleep state and number of
body movements is

RN = FasA) /[ FaaFss(M12, (6.4)

where f,z(A) is obtained by averaging the values of the
product d,(m/N)dg(m/N) over values of m in a neighbor-
hood of A. Similarly, fA 4(A) and fBB‘(A) are obtained by av-
eraging the Walsh periodograms d3(m/N) and dy(m/N) over
m in a neighborhood of A. These ideas were previously dis-
cussed in Section 5, after equation (5.4). As in the case of
ordinary sample correlation, —1 =< K.s(V) =< 1, with values
close to —1 or +1 corresponding to strong association.
The coherencies of the unexposed infant and of the ex-
posed infant are compared in Figure 12. Since the sample
Walsh—Fourier cross-spectrum f‘AB(/\) is real, unlike the
Fourier coherency (which is absolute correlation relative to
frequency), the Walsh—Fourier coherency can be negative;
this was a considerable advantage over the trigonometric
case in this analysis. It was evident from Figure 12 that
there are small isolated ranges of sequencies at which the
coherency between the sleep-state data and the body-move-
ment data for the unexposed and the exposed infants differ
markedly in sign, most notably at the very fast or high end
of the sequency range: 120 to 127 switches per 128 time
points. Here, the coherency between the two time series is
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Figure 12. Coherency Between Sleep State and Body Movements
for the Unexposed Infant (Solid Line) and the Exposed Infant (Dashed
Line).

negative for the unexposed infant and positive for the ex-
posed infant. It is believed that this difference will be an
aid in the identification of a disturbance in the sleep cycle
due to alcohol exposure. This distinction might have been
missed in a trigonometric analysis, where an investigator
must work with absolute or squared coherency—a positive-
valued measure of association.

Finally, the average coherency of the group of 12 infants
whose mothers abstained from alcohol during pregnancy was
compared to the group of 12 infants whose mothers used
alcohol on a regular basis throughout pregnancy (these groups
were described in the previous section). Although there were
differences between the average coherency of the two groups
at various isolated ranges of sequencies (that were consis-
tent with the differences between ID 465 and ID 223 pic-
tured in Figure 12), differences in the sequency range 120—
127 (per 128) will be illustrated here. The average coher-
ency, with its standard error, for each group of 12 infants
and the normalized difference between the groups at se-
quencies 120—127 (per 128) are listed in Table 1. While
the difference between the exposed group and the unex-
posed group did not remain as marked as the individual
analysis, a trend prevailed. It appeared that, for the unex-

Table 1. Comparison of the Average Coherency Between Sleep
State and Number of Body Movements for a Group of 12 Infants
Whose Mothers Used Alcohol Regularly During Pregnancy
(Exposed) and a Group of 12 Infants Whose Mothers Abstained
From Alcohol Throughout Pregnancy (Unexposed)

Exposed group Unexposed group Normalized
Sequency mean (se) mean (se) difference
120 .07 (.14) —-.10 (.13) 91
121 .21 (113) —.04 (.11) 1.46
122 A7 (13) —-.08 (.17) 1.16
123 .20 (.14) 01 (.12) 1.08
124 .30 (.10) —-.03 (.15) 1.84*
125 .29 (.10) —-.00 (.12) 1.91*
126 .23 (.14) .00 (.17) .99
127 .29 (.12) -.06 (.16) 1.77*
NOTE: *Exceeds .05-level critical value for a one-sided t test.
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posed group, the sleep-state series and the body-movement
series have zero coherency on average at the fast sequencies
(although there was a tendency to be on the negative side
of zero as in the case of ID 465), while the average co-
herency between the two time series for the exposed group
was positive (which was consistent with the individual anal-
ysis of ID 223). Although the neurophysiological aspects
of these results are difficult to explain at this time, we be-
lieve that these coherency results will act as markers in es-
tablishing EEG abnormalities.

6.4 Scaling Categorical Time Series

The scaling of categorical-valued time series is in the same
vein as scaling in the analysis of contingency tables and
regression with qualitative variables (e.g., Breiman and
Friedman 1985; Greenacre 1984; Nishisato 1980). That is,
in order to use quantitative statistical techniques on quali-
tative variables, scaling provides a method to optimally as-
sign numerical values to the categories according to some
specified reasonable criteria. For example, in Section 6.2,
the six EEG sleep states were arbitrarily assigned the nu-
merical values of 1 through 6 so that an analysis of variance
could be performed on the data as if the numerical values
were actually the outcomes. Although the results of Section
6.2 will not change if the data are transformed by a linear
transformation, they are not invariant to even monotone
nonlinear transformations of the values. Hence it is nec-
essary to quantify the categories for use in spectral analysis
according to reasonable optimization criteria.

Let X*(#) be the categorical-valued EEG sleep-state series
of an infant in the study described in Section 6.2, and note
that there are six possible states or categories. For example,
the sleep-state series of infant ID 223 shown in Figure 9 is
(indeterminate, mixed active, indeterminate, mixed active,
...). LetY(®) = (Y1(d), ..., Ye(?)) be a6 X 1 binary-valued
random vector such that

Y;)=1 if X*(?) is in state j at minute ¢

=0

From Figure 9, Y(0) = (0, O, 1, 0, 0, 0)’, Y(1) = (0, O,
0,0,1,0), Y2 =(@,0,1,0,0,0, YB3 = (0,0, 0,
0, 1, 0)', .... Applying the results of Stoffer (1990) for the
Walsh—Fourier analysis of the vector observation Y(¢), there
is a consistent estimate f'y()\) of the 6 X 6 spectral density
matrix fy(A) of Y(¢), based on the 6 X 1 Walsh—Fourier
transform of Y(#). This spectral matrix would be of some
interest in the analysis of this data, however, by definition
of the Y(#) time series, most coherencies [off diagonal ele-
ments of f,(A)] would be negative [since, for example, if
one component of Y(?) increases from minute 1 to minute
2, one of the other components must decrease in that same
minute].

Scaling consists of assigning numerical values (scales or
scores) to the six categories of X*(¢) according to some op-
timal criterion. This problem can be viewed as optimally
selecting a 6 X 1 vector of real numbers, say 8 = (B, ...,
Bs)', to produce a numerical univariate time series X(#) =
B'YQ® = E}-LlBij(t) that allows quantitative analysis of the

otherwise.
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qualitative time series X*(f). Note that by definition of the
Y;(#)’s, if the categorical process is in state j at time ¢, then
X(t) = B;. The problem is how to select an appropriate cri-
terion for determining the vector of scales .

I will first focus on the initial analysis of Section 6.2,
that is, the detection of a common sleep signal in each group
of infants, the alcohol exposed group and the unexposed
group. As in Section 6.2, let X3¥(¢) be the qualitative sleep
state of infant g in the group (¢ =1, ..., 12;¢=0, 1, ...,
127). Corresponding to each qualitative EEG sleep-state time
series, X7¥(#), there is the quantitative 6 X 1 vector series
Y, (), which we may model in an analogous manner to the
model presented in Section 6.2: Y (1) = 0, + S(¥) + €,(2),
where S(#) represents the hypothesized common sleep pat-
tern of the particular group with Walsh—Fourier spectrum
fs(A) and €,(?) is uncorrelated with S(7) and has Walsh—Fourier
spectrum f (A). The validity of models such as this for dis-
crete-valued (in particular binary-valued for this discussion)
time series can be found in Stoffer (1987). Under the model
assumptions, the 6 X 6 spectral matrix of Y (?) is fyq()t) =
fs(A) + f.(A) (0 < N < 1), and hence the spectrum of the
univariate scaled time series X,(f) = B'Y,(?) is fxq()t) =
B'fs(M)B + B'EA)B (0 < A < 1); this result is similar to
the usual variance result, var{B'Y, (1)} = B’ var{Y,(?)}B.

It can be shown that the noncentrality parameter of the
test given in (6.3) of Section 6.2 is essentially the signal-
to-noise ratio of the X (r) process, namely, {B'fs(A)B}/
{B'£.(A)B}; see Stoffer (1987) for details. Hence it is ap-
parent that the score vector  should be chosen to maxi-
mize, in some sense, this signal-to-noise ratio. Of course,
fs(A) and f.(A) are unknown and must be estimated; let t)
and f'e(/\) be consistent estimates of fg(A) and f.(A). The scal-
ing problem, then, is to choose the score vector B to max-
imize {B'f5(A\)B}/{B'f.(A)B} in some sense. For example,
one could choose B to maximize the signal-to-noise ratio
at one particular sequency of interest, or to maximize an
integrated signal-to-noise ratio, {B'fsB8}/{B'f.B}, where

N-1 N-1
fy= >, fm/N) and £ = D Lom/N);
m=1 m=1

a weighted scheme could also be used, say

- 2ot
-3 GRG)

where tr denotes trace. In these cases the optimal score vec-
tor 3 can be obtained by the solution of a matrix eigenvalue
problem (see Rao 1973, sec. 1).

In this particular problem, the categories associated with
EEG sleep states are ordered, and hence the scales, or ele-
ments, of B should be ordered; for example we seek B =
(Bis ..., Bs)' such that B; =< --- = B Nishisato (1980
chap. 8) discusses a few methodologies that could be ad-
justed to this problem. Techniques to obtain monotone
transformations such as the one discussed in Kimeldorf, May,
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and Sampson (1982), or as is used in the ACE algorithm
(Breiman and Friedman 1985), or suitable isotonic regres-
sion algorithms (Robertson, Wright, and Dykstra 1988) could
also be adapted for this particular problem.

To apply these techniques to the EEG sleep-state data for
the unexposed group and the exposed group of infants, the
optimal score for each group was obtained as follows: (a)
the 6 X 1 Y,(#) vectors for each infant in the group were
formed; (b) the Walsh—Fourier transform dy ,(m/N) of the
Y, (¢) data vectors were calculated using the fast transform;
(c) the average transform was calculated, dy .(m/N) =
[£2,dy,(m/N)1/12; (d) the 6 X 6 error spectrum f.(A) was
estimated by

12

t.om/N) = D [dy(m/N) — dy,.(m/N)]
q=1

X [dy(m/N) — dy,.(m/N)]'/11,
and a 6 X 6 hypothesis spectrum f;(A) was estimated by
fu(m/N) = 12 dy,.(m/N)dj, .(m/N)

in analogy to the hypothesis mean-square defined in (6.3);
the 6 X 6 signal spectrum fs(A) can be estimated by f‘s(m/
N) = t4(m/N) — [f.(m/N)/12] as described in Stoffer (1987);
(e) the integrated error spectral estimate was calculated as
previously described, that is, f. = ShZif.(m/N), however,
the integrated signal spectrum f; was replaced by f; =
SnZifu(m/N); (f) the optimal score vector B was computed
to maximize {B'f,B}/{B'f.B} as the solution to a matrix ei-
genvalue problem. The reason for changing strategies from
f; to £, was primarily based on a matrix conditioning
problem.

The score vector obtained for the unexposed group was
B. = (8.60, 8.50, 8.41, 8.59, 8.43, 8.44)" and for the al-
cohol exposed group was B, = (5.80, 5.81, 5.78, 5.86,
5.76, 6.13)'; these scales correspond to the sleep-state la-
bels in the order presented in Section 6.2; for example, in
the unexposed group, the value 8.60 is given to quiet sleep—
trace alternant and the value of 8.44 is given to the awake
state. These vectors are unique up to a scaling constant, so
for example, the largest scale value could also be the small-
est scale value by multiplying the vector by —1. Since these
optimal scores were not ordered (states 3, 4, and 5 are out
of order in the unexposed group; states 3 and 5 are out of
order in the exposed group) I ordered them by simply av-
eraging neighbors to obtain the ordered score vector for the
unexposed infants, B,, = (8.60, 8.50, 8.49, 8.47, 8.45,
8.44)', where the scales for states 3, 4, 5 are computed as
[p X 8.50 + (1 — p) X 8.44] (p = .75, .50, .25), and
the ordered score vector for the alcohol exposed infants,
B.. = (5.80, 5.81, 5.84, 5.86, 6.00, 6.13)', where 5.84 is
the simple average of 5.81 and 5.86, and 6.00 is the simple
average of 5.86 and 6.13.

The test described in (6.3), Section 6.2, for determining
whether a group has a common sleep pattern was performed
using the optimal and the ordered scales, however, the F
ratios differed only slightly and the plots do not differ vi-
sually; hence only the ordered cases are presented here.
Figure 13 shows the F ratios (as square roots) for the unex-
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Figure 13. F Ratio (6.3) for Testing for a Common Signal in the
Unexposed Group of Infants (Solid Line—Circles) and in the Exposed
Group of Infants (Dashed Line—Squares) Using the Scaled Sleep States.

posed and the exposed groups of infants. First, note that
the F ratios are considerably larger in general than they
were in Section 6.2, and it is easier in this case to pick out
the peak values. Second, notice that there is now strong
evidence of a common signal in the exposed group. Third,
although it is difficult to see in the figures, we are led to
basically the same conclusions as to where the peak periods
are in each group. For example, using these scaling results,
the peaks for the unexposed group occur at the sequencies
1-15, 21-31, 56—63, with possible peaks in the ranges 72—
79, and 120-127; these are approximately the same con-
clusions that were made previously in Section 6.2 and in
Stoffer et al. (1988, tab. 1). For the exposed group of in-
fants, these scaling results suggest peaks in the ranges 1—
7, 11-14, 28-31, 60-63, and 120—127; this is fairly con-
sistent with the previous (although not overwhelming) re-
sults, except for the inclusion of the 60—63 sequency range
in this analysis. Finally, note that the two groups have peaks
at roughly the same range of sequencies and hence it ap-
pears that the sleep behaviors of the two groups of infants
have more in common than was previously believed.

The next step was to obtain optimal scales for the be-
tween-group comparison of the unexposed and exposed
groups of infants. Following the steps (a)—(f) outlined above,
with the 6 X 6 hypothesis and error spectral matrices de-
fined as

2
Bu(m/N) = 12 3 [dy, «M/N) = dy,..(m/N)]
k=1
X [dy,.i(m/N) — dy,..(m/N)]’
and

2 12
£on/N) = D) [dyalm/N) — dy,.(m/N)]

k=1 g=1
X [dy,g(m/N) — dy,..(m/N)]' /22,

where dy 4(A) is the Walsh—Fourier transform of the Y ,(¢)
data vector for infant g (g = 1, ..., 12) in group k (k =
1, 2); the optimal score vector for comparing the two
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groups was computed to be B = (—.43, .03, .42, 2.16,
—.14, 3.53)". Although only State 5 is out of order, the
difference between the unordered scales 8 and an ordered
version of B—say where State 5 has a scale value between
2.16 and 3.53-—was considerable. Nevertheless, an or-
dered set of scales was sought, and after trying scales for
State 5 of the form p X 2.16 + (1 — p) X 3.53, where 0
= p = 1, it was discovered that choosing p = 1 was the
best in the sense that it gave results closest to the optimal
but unordered scale vector 3. Hence the ordered score vec-
tor used was B, = (—.43, .03, .42, 2.16, 2.16, 3.53)' in
which case the two active sleep states, low voltage and
mixed, are given the same scale. Figure 11 shows a plot
of the F ratios for the between-group comparison using the
ordered scales By—recall that Figure 11 also displays the
results of this analysis from Section 6.2 using suboptimal
scales. Note that the results of the two analyses do not dif-
fer by much, and one could draw the same conclusions that
were drawn in Section 6.2. On the basis of the results given
in Figure 13 and the fact that using the optimal scales for
distinguishing between the two groups did not establish
overwhelming differences, however, I would hesitate to make
the conclusion of obvious sleep-cycling differences be-
tween the unexposed and the exposed groups of infants.
Evidently, it is imperative that more infant sleep studies be
performed before any definitive conclusions about the ef-
fects of moderate maternal alcohol consumption on infant
sleep-state cycling are drawn.

The results on scaling for time series discussed in this
section are preliminary at best. Clearly there are many ap-
proaches to the problem discussed here, and there are prob-
lems that were not discussed here, for example, how would
one scale only one time series of interest or how one would
scale multivariate categorical time series. Moreover, tech-
niques must be developed to obtain optimal ordered scales.

6.5 Classification for Multivariate Binary Data
Using Walsh Functions

Binary variables serve, in many instances, as good models
for observations, such as the presence or absence of a dis-
ease, the favorable or unfavorable outcome of an experi-
ment or treatment, et cetera. Often, one of these variables
is a response that depends in some unknown way on a num-
ber of binary predictor variables. In a time series context,
we may observe a binary-valued time series; for example,
in the sleep studies described in Section 6.2, we may be
interested in whether or not an infant is in REM sleep at
minute ¢. In this case, the predictors would be the past, and
the response would be the present state of the time series.

Let X, Y) = (X;, ..., X,, Y) be a (p + 1)-dimensional
vector of Bernoulli variables with a joint density f(x, y) (x;,
y = 0, 1). These variables may be different attributes, such
as X;: sex (male/female), ..., X,: smoker (yes/no), and Y:
myocardial infarction (yes/no), or the same attributes
evolving over time, such as X;: infant in REM sleep at min-
ute 1 (yes/no), ..., X,: infant in REM sleep at minute p
(yes/no), and Y = X,,.: infant in REM sleep at minute p
+ 1 (yes/no). The problem is to predict the outcome y of
Y from a knowledge of the outcome x. Many approaches



476

to this problem exist. While some procedures require the
estimation of the density f, others require only the esti-
mation of suitable functions of the probabilities of the points
in the sample space S of (X, ¥); see Ott and Kronmal (1976)
for a discussion.

It is clear—as well as optimal in the sense that the prob-
ability of misclassification is minimized—that one should
predict

if h(x) = f(x, 0) — f(x, 1) < 0
if h(x) = f(x,0) — f(x,1) >0,

and to make no prediction if f(x, 0) = f(x, 1).

In practice, f is not known. Instead, a classification or
prediction procedure can be based on estimates of f(x, y)
or A(x). An estimate based on the Walsh—Fourier transform
is discussed here.

The sample space S of X (where ¥ = X,,,) contains 2rt1
points each of which is a vector of zeros and ones. Let these
points be numbered by a binary index vector m. The dis-
crete Walsh functions in natural order can be written as
W(x, m) = (—1)™; m'x = 3 !'m;x; where m; and x; are
either O or 1 (the notation throughout this section will be
slightly different than the rest of this article to facilitate this
discussion). For example, if p + 1 = 3, then S contains 2’
points, W[(011), (101)] = (—1)°***' = —1 = W(3, 5) and
WI(111), (10D)] = (—=1)'*°*! = 1 = W(7, 5); these are the
(4, 6) and (8, 6) elements, respectively, of the natural-or-
dered Hadamard matrix H(3) displayed in Section 4. Since
the Walsh functions form a complete orthonormal set, the
probability of a point X € S can be written as the orthogonal
polynomial

y=1

y=0 (6.5)

@) =277 dm)W(x, m).

meEsS

(6.6)

The coefficients d(m) are the Walsh—Fourier transforms of
the density f(x) at sequency m,

dm) = Y} fEW(x, m).
XES
For a general discussion of the Walsh expansion of uni-
variate and multivariate probability density functions, see
Magqusi (1981, chap. 7).

The model free maximum likelihood estimate (MLE) of
f(x) is f‘(x) = n(x)/n, where n is the sample size and n(x)
is the number of times the outcome x is observed. Hence
put

d(m) = Y, n(x)W(x, m)/n,

XES

6.7)
so that the estimate of f(x) can be rewritten as

Foo =277 dm)W(x, m).

mes

6.8)

For example, in the case with p + 1 = 3 variables, consider
the following random sample of size n = 25: n(000) = 1,
n(001) = 4, n(010) = 2, n(011) = 5, n(100) = 2, n(101)
=3, n(110) = 7, n(111) = 1. The Walsh functions for all
x and m needed for this example are given in the natural-
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ordered Hadamard matrix H(3) displayed in Section 4. The
Walsh—-Fourier transforms of the data given by (6.7) are
d(000) = 1,d(001) = (1 —4+2—-5+2—-3+7—
1)/25=—-.04,d010) = (1 +4—-2-5+2+3—-7
- 1)/25 = —.20, d(011) = —.28, d(100) = —.04, d(101)
= —.44, d(110) = .04, d(111) = .28. The representation
(6.8) can be verified using these calculations; for example,
F@001) = n(001)/n = 4/25 = 273(1 + .04 — .20 + .28 —
.04 + .44 + .04 —.28).

So far, nothing more has been done than rewriting f‘(x)
= n(x)/n in terms of the Walsh functions. However, Ott
and Kronmal (1976) determined which coefficients in the
series (6.8) are to be set equal to zero for the estimates to
have certain desirable properties. This approach is in the
same vein as the methods of classification for binary vari-
ables where the density is written as

fx) = Cxp[ao + 2 ax 2 ey,

i<j

+ DO apxixx + -

.. ], (6.9)
i<j<k
X = (X, ..., X,4) (the @;’s are the main effects, the g;’s
are the first-order effects, etc.), and the classification pro-
cedure is constructed on the basis of this model assuming
that interaction terms above a certain order are equal to zero.
Ott and Kronmal (1976) discussed three classification
methods based on (6.9) and compared them to four other
methods based on the representation (6.6) [the representa-
tion (6.9) bears no particular relationship to (6.6)].

Ott and Kronmal (1976) based their term selection rules
by requiring that the mean summed square error Jg =
E{Z,,[fx,y) — F(x, y)I*} be minimized. They showed that
the increase in Jg due to the inclusion of the mth term in
the series (6.6) is

Ay = 277 Nvarld(m)] — d*(m)}
=27%*"V[1 — (n + 1)d*m)]/n.

Replacing d*(m) by an unbiased estimate, an unbiased es-
timate of the increase in the error Jg due to the inclusion
of the mth term is AJ, = 2772 — (n + 1)d*m)]/
(n — 1). Thus it is estimated that inclusion of d(m) in (6.8)
leads to a decrease in the error Js if AJ, < 0, that is if

d*m) >2/(n + 1). (6.10)

Whenever AJ,, = 0, that is, if d(m) does not satisfy the
term selection rule (6.10), ci'(m) is set equal to zero in (6.8).
For the preceding example with p + 1 = 3 and n = 25,
there are four terms whose absolute values are less than
.277 [the square root of 2/(n + 1)]. The density estimates
resulting from the deletion of the four terms are f(OOO) =
.07, £(001) = .18, (010) = .07, f(011) = .18, £(100) =
.11, £(101) = .14, f(110) = .25, f(111) = 0; recall that
the MLE’s n(x)/n were .04, .16, .08, .20, .08, .12, .28,
and .04 in the same order. The density estimates based on
the deletion rule differ somewhat from the usual MLE’s but
not enough to change the predictions by applying (6.5). For
example, ~(01) = £(010) — (011) equals —.11 (.07 — .18)



Stoffer. Walsh—Fourier Analysis

in the deleted terms case and equals —.12 (.08 — .20) in
the MLE case; hence in both cases we would predict the
outcome y to be 1 if we observed x = (0, 1).

For predictions of the outcome y at X, only the estimate
of the differences between the densities at (x, 0) and (x, 1)
need to be estimated to apply (6.5). The relevant difference
can be developed into the series

h(x) =f(x,0) — f(x,1)=2"" 2 emWx, m), (6.11)
mes(x)
where S(x) is the sample space of the variables X; (i = 1,
..., p). The term e(m) in (6.11) is the Walsh—Fourier trans-
form of the difference of the densities, and the MLE of
e(m) is given by é(m) = S,eqW(x, m)[n(x0) — n(x1)]/
n, so that the MLE if A(x) can be written as

h(x) =27 > ém)W(x, m). (6.12)
mesS(x)
If the mean summed square error
Js = E{ > [hx) - ﬁ(x)]z} (6.13)
XES(x)

is to be minimized, then following the preceding argu-
ments, the selection rule for omitting é(m) terms in (6.12)
has exactly the same form as (6.10) with é(m) replacing
d(m).
Applying the exclusion rule can be thought of as giving
a weight of zero or one to each of the coefficients in (6.12).
Ott and Kronmal (1976) suggest that it may be more sat-
isfactory to replace such an abrupt term selection rule by
determining weights w(m) € [0, 1] for each of the coef-
ficients € (m) in (6.12). Thus write (6.12) in a more general
way as
A(x) =27 > w(m)ém)W(x, m),

meSs(x)

(6.14)

where the weights remain to be chosen. To minimize the
mean summed square error Jg in (6.13), dJs/dw(m) was set
equal to zero and w(m) was solved for, obtaining the op-
timal weights

w(m) = ¢*(m)/E{e*(m)}.

Using the MLE for e*(m) the estimated weights were
Ww(m) = né*(m)/[1 + (n — 1)é*(m)].

To measure the performance of various classification
procedures—three based on the decomposition (6.9) and
four based on the decomposition (6.6)—Ott and Kronmal
drew random samples from 11 populations containing lower
to higher order interaction terms in the sense of (6.9) and
applied each of the seven methods to each sample. The
number of variables in each case was takentobe p + 1 =
6, while the number of random samples and the sample size
varied. For each simulation, the mean error of misclassi-
fication and its standard error was computed, where the
probability of misclassification is given by

P(x) =f(x,1—y)

_ L&, 0) + £(x, D]
2

if the predictionis Y =y

if no prediction is possible.
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Their conclusion was that the weighted Walsh—Fourier pro-
cedure (6.14) with w(m) replaced by w(m) dominated when
they ranked the mean errors of misclassification of the seven
procedures in each population. See Ott and Kronmal (1976)
for details.

7. DISCUSSION

It is evident that statisticians have, for the most part, been
absent from the development of Walsh—Fourier analysis.
In their 1976 article, Ott and Kronmal wrote that “There is
a vast literature about the theory and applications of dis-
crete [Walsh] Fourier series, which has seemingly gone un-
noticed by statisticians,” (Ott and Kronmal, 1976, p. 397).
Fifteen years later, this statement is still true (You won’t
find Walsh—Fourier anaysis mentioned in the Encyclopedia
of Statistical Sciences). The mathematical statisticians that
did work in this area were content to build a theory around
the absurd but convenient assumption that the data were
dyadically stationary. Of course they knew that such a the-
ory was not applicable, but the mathematics was nice. I was
once asked by a colleague who was working in the area if
I had any data that were dyadically stationary, after a mo-
ment of silence we simply laughed at the thought. It is ev-
ident why Ott and Kronmal’s statement remains true today.
In engineering, Walsh—Fourier analysis went from “hot
topic” to “nobody’s interested” in less than a decade. N.
M. Blachman wrote, “Thinking Walsh functions a fasci-
nating case study for historians of science, [I] tried to get
Gina Kolata to [write] the story of their rise and fall for the
American Association for the Advancement of Science’s
weekly Science (for which she was working) five or ten
years ago, but I was unsuccessful; she wrote that, since
interest had died out, the subject was no longer of sufficient
interest.” (personal communication, 1989). K. G. Beau-
champ explained that “An original idea behind most of the
applications in the 1970s was that [Walsh—Fourier] analysis
would prove a quicker, cheaper, and easier way of deriving
spectral information. This may have the case when com-
puters were slow and expensive to use, but the bulk of these
applications were overtaken by the very much increased speed
and power of the much cheaper machines which enabled
Fourier methods to be more effectively applied. I think this
was probably the reason for the demise of the annual Sym-
posia on Walsh functions.” (personal communication, 1990).

Walsh—Fourier analysis was nearly dead and buried be-
cause of the failure of ‘engineers and statisticians to see the
benefits of the technique in its proper perspective. Engi-
neers tried to replace the elegant, general, and practical
theory of Fourier (trigonometric) analysis with the idiosyn-
cratic theory of Walsh—Fourier analysis solely on the basis
that the computations are more suited to computers. Stat-
isticians were willing to build a statistical theory of Walsh—
Fourier analysis based on dyadic time that they knew good
and well would never be of any practical importance. Four-
ier (trigonometric) analysis is like the Gaussian distribu-
tion—everything works, the theory is elegant, and it is ap-
plicable in a wide variety of problems—but there are more
phenomena than the Gaussian distribution can explain and
we need and use other distributions. Walsh—Fourier anal-
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ysis is like a non-Gaussian distribution; it is useful but its
use is more restricted and the theory is not quite so elegant.

I have made the point that Walsh—Fourier analysis is not
a replacement for Fourier analysis; it is another tool with
which to help answer some questions that arise in the sta-
tistical analysis of data. In this article I have strived to ad-
dress this problem by exposing the mostly impractical side
of Walsh—based analysis, by presenting various ways in
which Walsh—Fourier analysis has been used successfully
and realistically in statistics, and by suggesting problems
for the future. There is clearly room for Walsh—Fourier
analysis in our statistical bag of tricks, but there is still much
to be done.

[Received July 1989. Revised December 1990.]
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K. G. BEAUCHAMP*

Comment

Stoffer has produced a very useful introduction to non-
sinusoidal analysis for statisticians who would not normally
consider (or even be aware of) such methods.

The summary given in the first half of the article is ad-
equate, although speaking as an engineer more used to con-
sidering the Walsh function as a tool to assist the process
of signal processing, I found several gaps in his presenta-
tion—examples being power spectral density analysis,
waveform filtering, and correlation applications. In addi-
tion, two areas in this introductory section are rather mis-
leading. The first area concerns the references to Harmuth’s
definition of sequency. This was not “forced in an attempt
to get Walsh-based analysis to behave like Fourier-based
analysis.” About the time when this definition was con-
ceived, computer time was expensive and Fourier analysis
(even using the fast Fourier transform) for any useful ac-
curacy did require a lot of computing time. Many scientists
and engineers saw Walsh function analysis as a means of
reducing computer costs (Beauchamp 1984; Temel and Lin-
kens 1978). Often this led to a preliminary analysis using
Walsh functions, with Fourier analysis applied later to se-
lected items of the data that looked promising. Later, as
computers became more powerful, the saving of time be-
came less important and attention turned to those areas where
there were significant differences in the quality of analysis
using Walsh functions and where the special characteristics
of these waveforms would be applicable.

The second area with which I take issue is the treatment
of dyadic time. This is more than imposing scaling differ-
ences in real/dyadic time as inferred in Section 3. I con-
sidered this in some detail in Beauchamp (1984, chaps. 5,
6) and gave an illustration of the linear and dyadic time
domain (Beauchamp 1984, fig. 3.1). In this diagram, con-
secutive data samples for a process are shown equally spaced
(that is in real time) so that, whereas (for example) in arith-
metic correlation, the lag increased uniformly with time, in
the dyadic case, the time lag varies in a nonlinear way and
can actually go backward. Consecutive data samples in real
time are seen as taking place in a series of jumps unequal
in length over both forward and backward time intervals
due, of course, to the modulo-2 nature of the time addi-
tions. It is this that makes processing involving correlation

* K. G. Beauchamp is a private consultant, 35 Belle Vue Terrace,
Greaves Road, Lancaster LA1 4TY, United Kingdom. He retired from
the post of Director of Computing Services, University of Lancaster, in
1985.

using Walsh series so difficult to interpret and relate to
Fourier methods. The problem is dealt with very thoroughly
by Gibbs (1969, 1970) and Gibbs and Pichler (1971), who
suggested a whole new mathematics to deal with the situation.

Turning to the statistical applications research section of
Stoffer’s article (Sec. 6), it is interesting to note that the
appearance of a peak in the Walsh function periodogram,
not present in the equivalent Fourier periodogram, has been
noted by other workers, particularly those concerned with
seismic waveform analysis (Kennett 1975). It has been sug-
gested that this could indicate a specific difference between
certain types of seismic data, not apparent with conven-
tional Fourier analysis, leading to a better identification of
earthquake characteristics, but this has not yet been ade-
quately proven.

The statistical application section is limited by the pre-
sentation of only one real application, namely, the methods
used for measuring alcohol use and the scoring of neonatal
EEG sleep records. The conclusions reached in this case
are interesting but would benefit from more extensive mea-
sured data, since a clinician may be chary of basing a treat-
ment on the indications shown in the results of the analysis
due to their sparse nature. Nevertheless, the stimulus pro-
vided by Stoffer’s discussion to submit data to nonsinusoi-
dal analysis is valuable, and I hope that in the near future
it encourages more application of these methods to statis-
tical data.
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DAVID R. BRILLINGER*

Comment

Professor Stoffer is to be congratulated for having pre-
pared such a fine review and for having lifted the Fourier—
Walsh analysis of time series data to a higher statistical
level. While many of the computations will be so very fa-
miliar to those knowledgeable in the design of experiments
and analysis of variance, we are forced to view things in a
new light and this has to be a good thing.

In my discussion I will focus on a naive technique to
examine time series data for level changes. Suppose that
time is continuous and runs over the unit interval, [0, 1].
By a dyadic subinterval of [0, 1] will be meant an interval
of the form I = k277, (k + D27 (p>0,k=0,...,2°
— 1). One of the very special things about the Walsh func-
tions in dyadic (and, as Professor Stoffer has pointed out
to me, also in sequency) order is that if S,(f) denotes the

p=1,AIC =10.141 p=2, AlC =9.864

1400
1400

1200
1200

1000

annual volume
1000
. =
e
annual volume

800
800

00
600

1880 1920

year

1960 1880 1920

year

1960

p =3, AIC = 9.941 p =4, AC = 9.930

[=] o
o o
< <
- -
[=] o
o (<3
(3] (3]
- -
g g
o [=3
s © | 3 9
3 © 9 ©
> T >
© H ®
3 o 3 o
E8 £ 8
© ©
[=] [=]
QA (=3
© ©

—

1880 1920 1960 1960

year

1880 1920

year

Figure 1. Nile River Discharge at Aswan. Data are from Cobb (1978).
The series has been broken into 2° approximately equal segments,
and the values within each segment averaged to obtain a level for the
segment.
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Figure 2. Sleep State of the Infant. Data are from Figure 4 of the
article. The series has been broken into 2° segments, and the values
within each segment averaged to obtain a level for the segment.

partial sum of the first n =
f(@) then

27 terms of the expansion for

S =20 ff(u) du, 1
1
where I = I, is the dyadic interval containing ¢ (see Fine
1949). Among other things, this result immediately gives
the convergence of S,(¢) to f(¢) for suitable f(-) as n tends
to infinity. The function (1) strikes me as quite natural to
consider in problems concerning functions that might be
constant over intervals. One simply breaks the domain of
observation into intervals and averages the measurements
within the interval for a level for an interval. Figure 1 pro-
vides the results of such computations, for p = 1, 2, 3, 4,
for the series of annual volumes of the Nile River discharge
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at Aswan from 1871 to 1970. (The data may be found in
Cobb 1978.) One of the issues with this data has been
whether or not the mean level experienced an abrupt change
at some point in time. In the computations here, the integral
of (1) has been approximated by a discrete sum. To guide
assessment of an appropriate number of Walsh function terms
to include in the sum, the Akaike Information Criterion (AIC)
has been computed for the cases, proceeding as if the errors
were independent normals. The criterion is least for p = 2,
and the corresponding graph of Figure 1 is highly suggestive.

I was led to think through the above approach because
of a concern about the behavior of the “sequency” ordered
functions when there is a shift of time origin. It seems to
me that sequency statistics can well vary substantially if
several of the initial points of a time series happen to be
dropped, or if more early data points happen to turn up. I
have corresponding concerns regarding vector time series
analyses. How is one to align the components of series of
this type? If one has an evoked response experiment, then
there is a specific and crucial time origin, but is that the
case here? I guess I am asking how robust are the analyses
given here to dropping some of the data points from the
beginning, as could well have happened had one simply
commenced the measurements at a slightly later time? In

PEDRO A. MORETTIN*
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the case of the analysis for my Figure 1, the effect seems
easily understood. If the data values excluded are not ex-
treme, then the “fitted” function itself should not vary a
lot. It would seem that the amplitudes of the individual Walsh
function components could well vary noticeably, however,
and hence be the source of difficulty of interpretation.

Figure 2 presents the results of applying the preceding
computations to the data in the article. Stepwise functions
of the desired type have been produced. If the true phe-
nomenon is actually fluctuating rapidly, these “smooth”
functions will tend to miss that however.

Of course there can be no unique solution to problems
of the type discussed in this article. Setting down specific
models is one way that we focus our attention. The sort of
model that occurs to me in the present context is a jump
process in which the signal S(¢) is constant in segments fill-
ing up the time interval of observation. I wonder whether
Professor Stoffer has some such formal model in mind? One
for which a likelihood analysis is available?

ADDITIONAL REFERENCE
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a Change Point Problem,” Biometrika, 65, 243-251.

Comment

In his comments on Morettin (1981), J. Durbin con-
cluded by saying that “as regards the applications of Walsh
functions to series which are stationary in the normal sense
I am frankly sceptical about this.” The current article by
David Stoffer is therefore timely and stimulating.

When I was myself faced with the task of writing my
thesis in the Walsh field I was intrigued by its novelty, as
well as by the difficulties of interpretation which are due
to the strange behavior of dyadic time. As properly re-
marked by Stoffer, even if it is quite natural to think about
the intensity associated with each term of (3.6) leading to
the concept of the Walsh spectrum

g = X, BYWG, D),  0<A<1, ey

J=0

it is less evident how to interpret the dyadic covariance
Sfunction

B(j) = E{x()x(t © j)}, )

assumed to be absolutely summable. It follows that X(¢)
given by (3.6) has to be dyadically stationary and not sta-
tionary in the usual sense.

The mathematical setup that is behind each case is as
follows. When we analyze stationary processes, with con-
tinuous time, for example, we are considering a locally
compact Abelian group (LCAG), namely, the additive group
R of the real numbers. The characters of this group are the
exponentials €”* (x, y in R), hence the importance of sines
and cosines. In this sense we can say that we live in a “si-
nusoidal world.” In almost any field, as in communications
engineering for example, especially in the theory of linear,
time-invariant networks, Fourier analysis is perhaps the main
mathematical tool.

If the Walsh functions are considered, the LCAG that is
behind the scene is the so-called dyadic group D, which is
the set of all sequences x = {x,}, where x, = 0 or 1, with
group operation given by z =x + y (X, y € D) and z, =
x, + ¥, (mod 2). Fine (1949) showed that the characters of
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this group can be identified with the full set of the Walsh
functions. The appropriate class of stochastic processes to
entertain, therefore, must have probabilistic structure un-
changed under dyadic shifts. This can be generalized to
processes defined on general LCAG’s. See Morettin (1980)
and Brillinger (1982) for further details. As a consequence
of this general theory, spectral representations for B(j) and
X(9), dyadically stationary, exist, analogous respectively, to
those for the normal stationary processes.

If X(#) is stationary and y(j) is the covariance function,
then it follows from (2) that B(j) is a function of y(t @ j
— 1), if it would make sense to define (2) for a stationary
process. An estimate of (2) is

N—j
B(j)=N"' 2 XOX¢® ),

=0

3)

while an estimate of 7(j), defined in (5.2), is proposed by
Kohn (1980b) to be
N-1

2(j) =N D XOX¢ D j).

t=0

“

Robinson (1972a) defined the logical covariance as the
average of possible #(j)’s computed over an ensemble of
“windows of data” and showed that there is a relationship
between this logical covariance and +y(j), which is men-
tioned by Stoffer and also defined by Kohn (1980a) in his
Lemma 2. It would be nice if Stoffer could give a pedes-
trian account of these facts and tie them together. Other
references are Yuen (1973), Gibbs (1967) and Pichler (1970).

The problem here is that although a Wiener—Khintchine
theorem holds for 7(j), namely,

DAVID S. STOFFER
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1
() = f W(j, »)dG),  j=0, &)
0

a Cramér-type representation does not hold for X(¢) sta-
tionary, except in the trivial case y(j) = 0 (j # 0), as
shown by Kohn (1980a). For dyadically stationary pro-
cesses, this type of representation holds, as we just men-
tioned, but it seems that practical examples of these pro-
cesses are scarce in nature; they tend to be man-made, as
the response of a sequence filter to a white-noise input.

I also would like to have seen some mention of alter-
native estimators of the Walsh spectrum, besides the
smoothed periodogram. A smoothed estimator obtained from
(5.3) and (4) is computationally comparable with the first
approach, as shown by Yuen (1973), for example.
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Rejoinder

I thank Beauchamp, Brillinger, and Morettin for their
comments on the applications of Walsh—Fourier analysis in
statistics. Much of my work in this area is based on their
research, and their comments are a welcome complement
to this exposition. I will address the comments of the dis-
cussants in lexicographic order (although I did give some
thought to dyadic order).

1. RESPONSE TO BEAUCHAMP

I must begin by saying that anyone who is interested in
using Walsh function analysis should first refer to Beau-
champ’s books (1975, 1984); they would certainly fill the
gaps noted in the presentation. About Harmuth’s definition
of sequency being forced to make Walsh analysis behave
like Fourier analysis, I believe that Beauchamp’s expla-
nation agrees with my interpretation. That is, at the time

that Harmuth developed his theory of sequency, Walsh
analysis was used as a quick-and-dirty Fourier analysis (this
use of Walsh—Fourier analysis nearly brought about the de-
mise of the technique once fast and cheap computers be-
came available). There is a natural pairing of cos(2wnA)
and sin(27nA), in that one is just a shift of the other; there
is not, however, a natural pairing of W(2r — 1, A) and
W(2n, A). My concern is that in Harmuth’s definition of
sequency W(2rn — 1, A) and W(2n, A) are paired simply
because in Fourier analysis cos(27rnA) and sin(2wnA) are
paired.

Dyadic relationships are an unfortunate but necessary
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companion of the Walsh functions and must be dealt with.
Results pertaining to the dyadic domain are entirely arti-
ficial, however. 1 have never seen dyadically stationary time
series data (except for the trivial white noise case) or a real-
world use for the notion of dyadic time.

I first encountered the appearance of a peak in a Walsh
spectrum that was absent from the corresponding Fourier
spectrum in Beauchamp (1975, pp. 101-102) where an
analysis of a simulated seismic waveform was performed.
I was intrigued by this occurrence, and it had a major in-
fluence in my pursuing the statistical applications of Walsh
spectral analysis. That is, this occurrence was clear evi-
dence that Walsh-based methodology was not merely a rep-
licate of sinusoidal based methodology. That this occurred
in the analysis of the sleep data in Section 6.1 adds to the
evidence of the unique quality of Walsh—Fourier analysis.
But, will that peak always be there whether or not it is
meaningful? The answer is no; as discussed in Sections 6.1
and 6.2, this extra peak in the Walsh spectrum was present
and meaningful in the unexposed infants and absent in the
alcohol-exposed infants, even though there were similari-
ties in the Walsh spectra of the two groups of infants at the
lower sequencies (see Stoffer et al. 1988, Figure 3).

Finally, the clinical implications of some of this work
were discussed in Stoffer et al. (1988) and were made avail-
able to clinicians in Scher et al. (1988).

2. RESPONSE TO BRILLINGER

Brillinger begins his comment with an excellent dem-
onstration of analyzing level changes in time series via Walsh
functions. This is an example of the applicability of Walsh
analysis where sinusoidal analysis would not be considered.
This type of analysis is precisely the type of useful statis-
tical methodology that will be generated once researchers
move away from trying to use Walsh—Fourier analysis to
mimic sinusoidal analysis, and I thank Brillinger for this
contribution. I would add that one might want to fine tune
the procedure by dropping certain insignificant terms (ac-
cording to some optimal procedure) in the expansion S,(f)
in much the same way that coefficients were dropped in the
analysis described in Section 6.5.

Brillinger next focuses on two concerns, one dealing with
general results of the effect of phase or shift in Walsh—
Fourier analysis and the other dealing with how these re-
sults pertain to the analysis of the sleep-state data in Section
6. The general problem concerns the difference between the
transform of the data X(#) and the transform of the phase-
shifted data, say Y(/) = X(¢ + 7) ¢ = 0, 1, 2, ...). The
Fourier transform of X(#) and Y(¢) are the same (certainly
a desirable property); however, this is not the case for the
Walsh—Fourier transform. This matter was discussed in fur-
ther detail in Beauchamp (1975, pp. 42—-45, pp. 89-94).
Beauchamp (1975) noted, however, that phase shift yields
comparatively small changes in the shape of Walsh power
spectra. He further argued that phase shift is unimportant
when the start of a signal can be readily defined (for ex-
ample, a seismic disturbance or an evoked response).

Brillinger’s second concern is that the start of the sleep
signals might not be well defined and that the occurrence
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of phase or shift differences among the infant sleep signals
will affect the individual and group analyses. Let me start
with the individual analysis of the unexposed infant. Bril-
linger asks what will happen if several of the initial points
of the sleep data happen to be dropped. Figure R.1 com-
pares the Walsh periodogram of the original sleep data shown
in Figure 8 (see Section 6.1 for details) and the Walsh pe-
riodogram of the same data but with the first 10 observa-
tions (10 minutes) removed (the altered data were padded
to N = 128). As expected, there are differences in the pe-
riodograms, but as Beauchamp found in his work, essen-
tially the same information is obtained (the peaks are shifted
slightly and the amplitudes, as predicted by Brillinger, have
decreased).

For the group analyses, the assumption that the sleep sig-
nals have been aligned (or are in phase) is critical, and Bril-
linger wonders how one can align the components of these
sleep state series. The sleep series are aligned because of
the protocol that was employed in these sleep studies. Briefly,
only a select group of neonates participate in a sleep study—
vaginal or cesarean section birth with no general anesthesia
or Apgars less than six at five minutes, 38—42 weeks’ ges-
tation, male infants prior to circumcision, infant not on an-
tibiotics, and infant 24—36 hours of age. Preparation for a
sleep study takes about 30 minutes: the head is measured
and marked, the scalp is cleansed, approximately 20 flat-
disc electrodes are applied to the head with cream and tape,
and the baby is swaddled and placed into a bed after being
fed (so that the infant is asleep). The sleep study begins
and records for two hours in a quiet, environmentally con-
trolled room designated for neonatal sleep studies. Thus there
is a fixed reference for the sleep signals analyzed due to
the amount of time spent on preparation, the extensive
preparation itself (that is, the neonate has been aroused for
quite some time), and the feeding and swaddling to ini-
tialize the sleep session.

As far as setting down a parametric model, I would say
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Figure R.1. Comparison of the Walsh Periodogram of the Sleep State
Data for the Unexposed Infant (Solid Lines—Circles) and the Walsh
Periodogram of the Same Data With the First 10 Minutes of Obser-
vations Deleted (Dashed Line—Squares).
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that this would be difficult at this point since so little is
known about infant sleep (very few infant sleep studies have
been performed). However, parametric modeling might be
applied to adult sleep since there have been extensive sleep
studies on adults. In the studies presented in this article, 1
focused on one particular aspect of the data, that of the
cyclic behavior of infant sleep—an investigation best ap-
proached by spectral techniques.

3. RESPONSE TO MORETTIN

Morettin gives a brief account of the Walsh theory for
dyadically stationary time series, an area in which he has
published extensively. I was reluctant to include any of this
material due in part to space constraints, but primarily to
the fact that, although the theory is convenient in the realm
of Walsh analysis (as pointed out in Morettin’s discussion
of the dyadic group), it has no practical application. Mor-
ettin’s comments partially fill this gap and interested read-
ers should refer to Morettin (1981) for a more detailed dis-
cussion. I believe that, except perhaps for purely
mathematical interests, it is time for the theory of dyadi-
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cally stationary time series to go to its final resting place.

Morettin reiterates the fact that there is no spectral rep-
resentation theorem for real-time stationary time series in
terms of the Walsh functions. As he states, this makes
interpretation of Walsh spectra difficult since we would like
to think of a time series as being decomposed in terms of
a linear combination of Walsh functions as in (3.6). I have
often worried about this and have hope that further research
will lead to an interpretation result for Walsh-based anal-
ysis. But again, this complication does not negate the prac-
tical utility of Walsh—Fourier analysis; it simply means that
we must be careful in the interpretation of peaks in the Walsh
spectrum—interpretation here is not as automatic as it is in
Fourier analysis.

Finally, Morettin mentions smooth estimation of the Walsh
spectrum. I have discussed this as a practical matter in Stof-
fer (1990); basically, other than the smoothed periodogram,
the smoothed estimators that mimic the estimators of the
Fourier spectrum (see Kohn 1980b or Morettin 1981 for
details) will be extremely difficult to interpret due to the
way that these estimators depend on dyadic addition.





